ПОРОШКОВАЯ ПРОВОЛОКА Российский патент 2009 года по МПК B23K35/368 

Описание патента на изобретение RU2356714C2

Изобретение предназначено для механизированной наплавки преимущественно инструмента горячего деформирования металла, работающего в условиях интенсивных ударных нагрузок и высоких температур, например для восстановления и упрочнения рабочих кромок ножей пресс-ножниц резки горячего проката.

Известна порошковая проволока (авторское свидетельство СССР №538873, B23K 35/368, опубл. БИ №46, 1976 г.) для износостойкой наплавки инструмента горячего деформирования, состоящая из стальной оболочки и шихты, следующего состава, мас.%:

углерод 0,05÷0,1 никель 4÷9 ферромолибден 7,5÷13,4 хром 4÷8 ферроиттрий 0,05÷0,10 ферросилиций 1,5÷3,0 феррованадий 0,5÷1,0 железный порошок 0,01÷13,5 стальная оболочка остальное

Металл, полученный известной порошковой проволокой, имеет недостаточную износостойкость при работе в условиях интенсивных ударных нагрузок, поскольку содержит в своем составе кремний, вредное влияние которого на пластичность нейтрализуется введением поверхностно-активного элемента иттрия.

Наиболее близким по химическому составу и назначению является изобретение, защищающее шихту порошковой проволоки для износостойкой наплавки штампового инструмента, работающего с ударными нагрузками и при повышенных температурах (авторское свидетельство СССР №260377, B23K 35/30, опубл. БИ №3, 1970 г.). При коэффициенте заполнения порошковой проволоки 33% порошкообразная шихта содержит, %:

никель 42,4÷49,5 кобальт 19,8÷29,7 молибден 13,2÷23,1 титан 3,0÷4,5 алюминий 2,8÷3,5

Однако наплавленный этой проволокой металл имеет недостаточную твердость (до 52 HRC), что обуславливает низкую износостойкость инструмента при деформировании высокопрочных сплавов, нагреваемых в процессе обработки до температуры 900°С.

Технической задачей настоящего изобретения является создание порошковой проволоки, обеспечивающей повышение твердости, окалиностойкости и вследствие этого износостойкости наплавленного металла, работающего в условиях интенсивных ударных нагрузок и высоких температур.

Технический результат достигается за счет того, что порошковая проволока, состоящая из оболочки, выполненной из армко-железа и порошкообразной шихты, содержащей никель, молибден, кобальт, титан, алюминий, отличающаяся тем, что шихта дополнительно содержит борид хрома и железо при следующем соотношении компонентов, %:

никель 25,9÷29,6 молибден 7,4÷11,1 кобальт 9,3÷14,8 титан 1,7÷2,8 алюминий 1,7÷2,8 борид хрома 16,7÷22,2 железо остальное,

а коэффициент заполнения проволоки порошкообразной шихтой составляет 54%.

Для изготовления порошковой проволоки используют чистые порошки металлов, варьируя состав шихты в зависимости от способа наплавки с учетом коэффициентов перехода легирующих элементов в наплавленный металл. Наплавка предложенной проволокой может производиться под фторидными флюсами либо в аргоне.

Введение никеля снижает температуру точки прямого мартенситного превращения, и при содержании его в металле свыше 9% создаются условия для получения чисто мартенситной структуры при любых скоростях охлаждения от температуры закалки. Благодаря наличию в металле никеля образуется пластичная мартенситная матрица, способная к интенсивному упрочнению из-за большой плотности дислокации.

Молибден повышает теплостойкость и прочность сплава, образуя при старении интерметаллиды типа Ni3Mo, Fe2Мо. Однако молибден снижает мартенситные точки и при его концентрации свыше 5% в структуре матрицы может появиться остаточный аустенит.

Кобальт увеличивает степень упрочнения сплава при старении. Он снижает растворимость молибдена в α-железе, увеличивая количество выделяющейся второй фазы при старении, и уменьшает степень ее дисперсности, что приводит к повышению прочности и пластичности наплавленного металла. В присутствии кобальта, повышающего мартенситные точки, содержание Мо в наплавленном металле может быть увеличено до 6%.

Введение в состав шихты титана и алюминия, осуществляемое в обычных для мартенситно-стареющих сталей пределах, позволяет упрочнить наплавленный металл в процессе отпуска интерметаллидными фазами типа Ni3Ti и Ni3Al. Кроме того, они повышают теплостойкость стареющего наплавленного металла при высоких температурах.

Введение в состав шихты борида хрома преследует две цели. Хром подобно кобальту повышает упрочнение в результате старения сплавов, содержащих титан, что повышает прочность, твердость и окалиностойкость при высоких температурах. Кроме того, повышенное содержание хрома способствует образованию на поверхности наплавленного металла прочной оксидной пленки, которая длительное время сохраняется при нагреве и охлаждении рабочих кромок инструмента в эксплуатации, препятствует налипанию обрабатываемого металла, снижает абразивный износ и не ухудшает поверхность получаемых заготовок.

Наличие бора ведет к выделению в структуре наплавленного металла боридной эвтектики, которая, располагаясь в виде каркаса между кристаллами, воспринимает часть энергии ударов и рассредотачивает ее на большую площадь поверхности, что увеличивает стойкость наплавленного металла к ударным нагрузкам. Кроме того, в процессе работы наплавленный металл упрочняется под воздействием рабочей температуры за счет выделения боридных фаз.

Железный порошок необходим для получения расчетного коэффициента заполнения порошковой проволоки, что обеспечивает получение металла требуемого химического состава. Также железный порошок способствует равномерности плавления шихты и оболочки, что улучшает сварочно-технологические свойства порошковой проволоки.

В качестве примесей могут присутствовать кремний и марганец до 0,2%, углерод до 0,1%, сера и фосфор до 0,03%.

Сочетание никеля, молибдена, кобальта, бора, железа обеспечивает образование интерметаллидных фаз, боридных фаз и фаз Лавеса, не подверженных явлению возврата (т.е. растворению при повышении температуры выше температуры старения), которое наблюдается в классических мартенситно-стареющих сталях, упрочняемых только фазами типа Ni3Ti и Ni3Al.

Для количественной оценки воздействия борида хрома на свойства наплавленного металла (в сравнении с известным составом шихты проволоки) подвергали испытаниям ряд составов проволок, изготовленных по известной в технике технологии, содержащих в шихте последовательно 11-15-19-22-26% этого компонента при содержании прочих компонентов в предлагаемых пределах и оболочки из армко-железа сечением 14×0,3 мм, при этом коэффициент заполнения порошковой проволоки составляет 54%.

Проволоками диаметром 3 мм, составы которых приведены в табл.1, на аппарате А-820 М под флюсом АНФ-6 выполнялась трехслойная наплавка на ребро пластин из стали 45 толщиной 20 мм. Из наплавленного металла изготавливались образцы для определения прочности и твердости, свойства которых по результатам испытаний трех образцов, приведены в табл.2.

Таблица 1 Варианты проволок Состав шихты, % Ni Mo Со Ti Al CrB2 Fe Прототип 27,8 9,2 16,7 2,2 2,2 - ост. 1 26 7,4 9,2 1,7 1,7 11 ост. 2 26 7,4 9,2 1,7 1,7 15 ост. 3 27,8 9,2 11,1 2,2 2,2 19 ост. 4 29,6 9,2 13,0 2,8 2,8 22 ост. 5 29,6 11,1 14,8 2,8 2,8 26 ост.

Таблица 2 Варианты проволок Свойства наплавленного металла в третьем слое Твердость (HRC) от времени старения (ч) при Тст=480°С Предел прочности при изгибе* (σизг), МПа 0 1 2 3 4 Прототип 43,0 48,5 49,5 51,0 52,0 1156 1 43,0 48,0 50,0 51,5 52,5 1164 2 43,5 49,5 51,5 53,0 54,5 1175 3 45,0 52,5 55,5 58,0 60,0 1193 4 46,0 53,5 57,5 59,5 61,0 1207 5 46,5 53,5 58,0 59,5 61,5 1216 * - Предел прочности на изгиб (σизг) определяли на образцах, прошедших старение при 480°С в течение 4 ч.

Как видно из таблиц, наилучшими свойствами обладает металл, полученный проволоками 3 и 4 варианта. Введение в шихту до 15% борида хрома включительно мало влияет на изменение твердости и прочности наплавленного металла, а превышение его свыше 22% практически не сказывается на дальнейшем улучшении рассматриваемых показателей качества.

Более низкая энергия активации процессов выделения дисперсионных упрочняющих фаз позволяет непосредственно в состоянии после наплавки получать сплав, обладающий достаточно высоким уровнем твердости (45÷46 HRC). Это дает возможность использовать сплав в качестве износостойкого слоя без последующей термической обработки, поскольку он еще самоупрочняется под воздействием рабочей температуры. Вместе с тем после дополнительной обработке сплава уже после 1 часа старения при температуре 480°С твердость возрастает до 51-54 HRC, а при большей выдержки достигает 59-62 HRC.

Предложенная порошковая проволока позволяет более чем в два раза повысить износостойкость ножей пресс-ножниц горячей резки проката по сравнению с ножами, наплавленными проволокой известного состава.

Похожие патенты RU2356714C2

название год авторы номер документа
ПОРОШКОВАЯ ПРОВОЛОКА 2011
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
RU2467854C1
ПОРОШКОВАЯ ПРОВОЛОКА 2012
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
  • Еремин Андрей Евгеньевич
  • Маталасова Арина Евгеньевна
RU2514754C2
ПОРОШКОВАЯ ПРОВОЛОКА 2010
  • Лосев Александр Сергеевич
  • Еремин Евгений Николаевич
  • Мухин Василий Федорович
RU2429957C1
ПОРОШКОВАЯ ПРОВОЛОКА 2018
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
  • Бородихин Сергей Александрович
  • Маталасова Арина Евгеньевна
  • Пономарев Иван Андреевич
RU2679374C1
ПОРОШКОВАЯ ПРОВОЛОКА 2010
  • Артемьев Александр Александрович
  • Соколов Геннадий Николаевич
  • Цурихин Сергей Николаевич
  • Лысак Владимир Ильич
RU2446930C1
ПОРОШКОВАЯ ПРОВОЛОКА 2020
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
  • Бородихин Сергей Александрович
  • Пономарев Иван Андреевич
RU2736537C1
ПОРОШКОВАЯ ПРОВОЛОКА 2011
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
RU2467855C1
ПОРОШКОВАЯ ПРОВОЛОКА 2018
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
  • Бородихин Сергей Александрович
  • Маталасова Арина Евгеньевна
  • Пономарев Иван Андреевич
RU2679373C1
ПОРОШКОВАЯ ПРОВОЛОКА 2019
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
  • Бородихин Сергей Александрович
  • Пономарев Иван Андреевич
RU2704338C1
Порошковая проволока 2022
  • Еремин Евгений Николаевич
RU2801387C1

Реферат патента 2009 года ПОРОШКОВАЯ ПРОВОЛОКА

Изобретение может быть использовано для наплавки инструмента горячего деформирования, работающего в условиях интенсивных ударных нагрузок и высоких температур. Оболочка порошковой проволоки выполнена из армко-железа. Порошкообразная шихта содержит компоненты в следующем соотношении, мас.%: никель 25,9 - 29,6, молибден 7,4-11,1, кобальт 9,3-14,8, титан 1,7-2,8, алюминий 1,7-2,8, борид хрома 16,7-22,2, железо - остальное. Коэффициент заполнения проволоки порошкообразной шихтой составляет 54%. Порошковая проволока обеспечивает повышение твердости, окалиностойкости и, вследствие этого, износостойкости наплавленного металла. Для изготовления порошковой проволоки используют чистые порошки металлов, варьируя состав шихты в зависимости от способа наплавки с учетом коэффициентов перехода легирующих элементов в наплавленный металл. 2 табл.

Формула изобретения RU 2 356 714 C2

Порошковая проволока для наплавки инструмента горячего деформирования, работающего в условиях интенсивных ударных нагрузок и высоких температур, состоящая из оболочки, выполненной из армко-железа, и порошкообразной шихты, содержащей никель, молибден, кобальт, титан, алюминий, отличающаяся тем, что шихта дополнительно содержит борид хрома и железо при следующем соотношении компонентов, мас.%:
никель 25,9-29,6 молибден 7,4-11,1 кобальт 9,3-14,8 титан 1,7-2,8 алюминий 1,7-2,8 борид хрома 16,7-22,2 железо остальное


а коэффициент заполнения проволоки порошкообразной шихтой составляет 54%.

Документы, цитированные в отчете о поиске Патент 2009 года RU2356714C2

ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ 0
SU260377A1
Порошковая проволока 1973
  • Южанинов Леонид Николаевич
  • Разиков Михаил Иванович
  • Шумяков Валентин Иванович
  • Манжелевский Владимир Васильевич
  • Хацкевич Михаил Григорьевич
SU476953A1
Состав порошковой проволоки 1974
  • Горбунов Анатолий Ермолаевич
  • Январев Евгений Иванович
  • Ткаченко Михаил Егорович
  • Либерман Владимир Иосиффович
  • Зеленин Геннадий Борисович
  • Мацаренко Владислав Дмитриевич
  • Савин Михаил Семенович
SU522030A1
ПОРОШКОВАЯ ПРОВОЛОКА 0
SU280211A1
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ 2003
  • Соколов Г.Н.
  • Цурихин С.Н.
  • Лысак В.И.
  • Зорин И.В.
RU2254219C1
Кеттелевальная машина 1927
  • Калитенко К.Л.
SU8550A1

RU 2 356 714 C2

Авторы

Еремин Евгений Николаевич

Филиппов Юрий Олегович

Еремин Андрей Евгеньевич

Лосев Александр Сергеевич

Даты

2009-05-27Публикация

2007-03-01Подача