ЯЧЕЙКА ОДНОРОДНОЙ СТРУКТУРЫ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ Российский патент 2009 года по МПК G06F17/13 G06F7/64 

Описание патента на изобретение RU2359322C1

Изобретение относится к области цифровой вычислительной техники и предназначено для разработки и конструирования специализированных устройств для решения дифференциальных уравнений, содержащих частные производные по пространственным и временной координатам, а также для решения систем линейных алгебраических уравнений.

Известен процессор матричной вычислительной структуры для решения дифференциальных уравнений в частных производных, содержащий решающие блоки, регистры, блок памяти команд, блок памяти данных, блок микропрограммного управления и блоки оповещения (Авторское свидетельство СССР №1280385, МПК 3 G06F 15/32, опубл. 30.12.1986, бюл. №48). Это устройство отличается универсальностью при реализации различных типов итерационных процедур вычислений, но его недостатком является избыточность и сложность реализации небольших задач.

Наиболее близким по технической сущности (прототип) к предлагаемому является ячейка однородной структуры для решения дифференциальных уравнений в частных производных, содержащая первый интегратор, блок масштабных интеграторов, выходы которого соединены со входами сумматора приращений, второй интегратор, выход которого соединен со входом первого интегратора и с одним из входов блока масштабных интеграторов, а вход второго интегратора подключен к выходу сумматора приращений (Авторское свидетельство СССР №783811, МПК 3 G06G 7/56, опубл. 30.11.1980, бюл. №44).

Недостатком этой ячейки является невозможность прямого решения дифференциальных уравнений, содержащих частные производные не только по пространственным координатам, но и по времени.

Задачей изобретения является расширение функциональных возможностей ячейки однородной структуры для решения дифференциальных уравнений в частных производных.

Поставленная задача достигается тем, что в ячейку однородной структуры для решения дифференциальных уравнений в частных производных, содержащую так же, как в прототипе, интегратор, блок масштабных интеграторов, выходы которого соединены с входами сумматора приращений, следящий интегратор, выход которого соединен со входом интегратора и с одним из входов блока масштабных интеграторов, а вход следящего интегратора подключен к выходу сумматора приращений. Выходом ячейки для соединения с входами других ячеек однородной структуры является выход следящего интегратора, а входами ячейки для соединения с выходами других ячеек - входы блока масштабных интеграторов.

Согласно изобретению дополнительно введены ключевой элемент и блок формирования приращений от искомой переменной с предыдущих шагов по времени, выход которого соединен с одним из входов сумматора приращений, а вход - с выходом ключевого элемента, первый вход которого соединен с выходом интегратора, а второй служит входом для сигнала управления.

Рассмотрим в качестве примера дифференциальное уравнение с первой частной производной по времени:

с начальными и граничными условиями:

где U - искомая переменная,

t - время,

х - пространственная координата (в общем случае это может быть вектор),

U0(x) - начальные значения искомой переменной,

G - граница области решения,

F(x,t) - функция источника внутри области решения,

FG(t) - функция источника на границе области решения.

В соответствии с конечно-разностной аппроксимацией по неявной схеме исходного дифференциального уравнения получаем расчетную формулу для внутренних узлов сетки, наложенной на область решения:

где Δt - шаг по времени,

h - шаг по пространственной координате,

n - номер шага по времени,

i - номер шага по пространственной координате.

Для обеспечения устойчивости решения при любом шаге по времени применяется метод установления (итераций) по фиктивному времени. Для этого все слагаемые конечно-разностного уравнения (4) переносятся в правую часть, а в левой части ноль заменяется производной от искомой переменной по фиктивному времени θ:

где

Далее применяется конечно-разностная аппроксимация по явной схеме для аргумента θ.

где […]θ - правая часть уравнения (5).

На первом шаге (n=0) по реальному времени расчетное уравнение (6) имеет вид:

где .

В общем виде уравнение (7) для n+1-го шага по времени:

Результат на выходе ячейки (следящего интегратора) формируется в виде приращений в соответствии со следующей расчетной формулой, вытекающей из уравнения (8):

Результат вычислений на каждом шаге по времени (8) накапливается в интеграторе и через ключевой элемент после подачи разрешающего управляющего сигнала передается в блок формирования приращений от искомой переменной с предыдущих шагов по времени в промежутке между циклами интегрирования по θ. В следующем цикле по θ этот блок дает последнее слагаемое в уравнении (9) для вычисления выходного результата ячейки.

Таким образом, введение дополнительных блока формирования приращений от искомой переменной с предыдущих шагов по времени и ключевого элемента позволяет расширить функциональные возможности ячейки и выполнять решение дифференциальных уравнений в частных производных не только по пространственным координатам, но и по времени.

Предлагаемая ячейка однородной структуры для решения дифференциальных уравнений в частных производных представлена на чертеже.

Она содержит блок масштабных интеграторов 1 (БМИ), сумматор приращений 2 (СП), следящий интегратор 3 (СИ), интегратор 4 (И), блок формирования приращений от искомой переменной с предыдущих шагов по времени 5 (БФПВ), ключевой элемент 6 (КЭ). Выходом ячейки для соединения со входами других ячеек однородной структуры является выход следящего интегратора 3 (СИ). Входы блока масштабных интеграторов 1 (БМИ) являются входами выходных сигналов других ячеек однородной структуры, а один из них соединен с собственным выходом ячейки. Еще один вход блока масштабных интеграторов 1 (БМИ) может быть использован для подачи значения приращения функции источника в выражении (9), которая может иметь сложный вид, и подается от внешнего устройства управления. Все выходы блока масштабных интеграторов 1 (БМИ) и выход блока формирования приращений от искомой переменной с предыдущих шагов по времени 5 (БФПВ) соединены со входами сумматора приращений 2 (СП), выход которого подключен ко входу следящего интегратора 3 (СИ). Выход следящего интегратора 3 (СИ) является выходом ячейки и соединен со входом интегратора 4 (И), выход которого через ключевой элемент 6 (КЭ) подключен (при наличии разрешающего сигнала на втором входе ключевого элемента) ко входу блока формирования приращений от искомой переменной с предыдущих шагов по времени 5 (БФПВ).

Перечисленные элементы могут быть реализованы на базе цифровых интегральных микросхем, например, серии К500-К531 и др. (Нефедов А.В. Интегральные микросхемы и их зарубежные аналоги. Справочник. Т4, 2001). Блок формирования приращений от искомой переменной с предыдущих шагов по времени 5 (БФПВ) может быть реализован на базе масштабных интеграторов и логических элементов.

Ячейка однородной структуры работает следующим образом.

Начальное значение искомой переменной заносят предварительно в блок формирования приращений от искомой переменной с предыдущих шагов по времени 5 (БФПВ) в соответствии с начальным условием исходной задачи (2). Если ячейку используют в качестве граничной, то в блок 5 (БФПВ) заносят граничные условия в соответствии с выражением (3).

После окончания цикла расчета по θ на первом шаге по времени по уравнению (7) на второй вход ключевого элемента 6 (КЭ) подают открывающий сигнал от внешнего устройства управления, и полученное значение искомой переменной из интегратора 4 (И) по уравнению (8) передается в блок формирования приращений от искомой переменной с предыдущих шагов по времени 5 (БФПВ) и используется в следующем цикле интегрирования по θ в качестве предыдущего значения на втором шаге по реальному времени (последнее слагаемое в уравнении 9). Длительность одного цикла интегрирования по фиктивному времени θ задают такой, чтобы значения искомой переменной в каждой ячейке устанавливались постоянными с точностью до заданной погрешности.

Эту итерационную процедуру повторяют далее до тех пор, пока не закончится заданное время интегрирования (по индексу n). Итоговый результат вычислений накапливается в интеграторе 4 (И) в соответствии со следующей расчетной формулой, следующей из уравнения (8).

Похожие патенты RU2359322C1

название год авторы номер документа
ЯЧЕЙКА ОДНОРОДНОЙ СТРУКТУРЫ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 2009
  • Хамухин Александр Анатольевич
  • Бабушкин Юрий Владимирович
RU2419141C2
АДРЕСУЕМАЯ ЯЧЕЙКА ОДНОРОДНОЙ СТРУКТУРЫ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ 2010
  • Хамухин Александр Анатольевич
RU2427033C1
Ячейка однородной структуры для решения дифференциальных уравнений в частных производных 1979
  • Бабушкин Юрий Владимирович
  • Хамухин Александр Анатольевич
SU783811A1
Ячейка интегрирующей структуры для решения уравнения лапласа 1975
  • Золотовский Виктор Евдокимович
  • Коробков Роальд Валентинович
  • Золотовский Николай Евдокимович
SU574733A1
ОПТОЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ 1991
  • Соколов С.В.
RU2042180C1
СПОСОБ УПРАВЛЕНИЯ ПРЕОБРАЗОВАТЕЛЯМИ ПОСТОЯННОГО НАПРЯЖЕНИЯ С ОДНОСТОРОННЕЙ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИЕЙ 2007
  • Казанцев Юрий Михайлович
  • Лекарев Анатолий Федорович
  • Солдатенко Вадим Геннадьевич
RU2337394C1
Устройство для решения краевых задач 1989
  • Рабеджанов Набиджан Рабеджанович
  • Гафуров Миршафи Хамитович
SU1624489A1
УСТРОЙСТВО ДЛЯ ВЫЧИСЛЕНИЯ ДИСКРЕТИЗИРОВАННОГО НЕПРЕРЫВНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ 2010
  • Хамухин Александр Анатольевич
RU2437147C1
Вычислительное устройство для решения дифференциальных уравнений 1985
  • Малиновский Борис Николаевич
  • Боюн Виталий Петрович
  • Козлов Леонид Григорьевич
SU1277134A1
ЦИФРОВОЙ ИНТЕГРАТОР 1973
SU409248A1

Реферат патента 2009 года ЯЧЕЙКА ОДНОРОДНОЙ СТРУКТУРЫ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ

Изобретение относится к области цифровой вычислительной техники и может быть использовано при построении различных специализированных устройств. Техническим результатом является расширение функциональных возможностей устройства для решения дифференциальных уравнений, содержащих частные производные не только по пространственным координатам, но и по времени. Ячейка содержит блок масштабных интеграторов, сумматор приращений, следящий интегратор, интегратор, ключевой элемент и блок формирования приращений от искомой переменной с предыдущих шагов по времени. 1 ил.

Формула изобретения RU 2 359 322 C1

Ячейка однородной структуры для решения дифференциальных уравнений в частных производных, содержащая интегратор, блок масштабных интеграторов, выходы которого соединены со входами сумматора приращений, следящий интегратор, выход которого соединен со входом интегратора и с одним из входов блока масштабных интеграторов, а вход следящего интегратора подключен к выходу сумматора приращений, причем выходом ячейки для соединения с входами других ячеек однородной структуры является выход следящего интегратора, а входами ячейки для соединения с выходами других ячеек - входы блока масштабных интеграторов, отличающаяся тем, что в нее введены ключевой элемент и блок формирования приращений от искомой переменной с предыдущих шагов по времени, выход которого соединен с одним из входов сумматора приращений, а вход с выходом ключевого элемента, первый вход которого соединен с выходом интегратора, а второй служит входом для сигнала управления.

Документы, цитированные в отчете о поиске Патент 2009 года RU2359322C1

Ячейка однородной структуры для решения дифференциальных уравнений в частных производных 1979
  • Бабушкин Юрий Владимирович
  • Хамухин Александр Анатольевич
SU783811A1
УСТРОЙСТВО ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 1992
  • Шепеть И.П.
  • Бражнев С.М.
  • Иванов М.Н.
RU2092899C1
СПОСОБ ЧИСЛЕННОГО РЕШЕНИЯ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 2003
  • Григорьев В.Г.
  • Григорьев Д.В.
  • Григорьев В.В.
RU2242791C2
УСТРОЙСТВО ДЛЯ ВЫЧИСЛЕНИЯ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ ТАБЛИЧНО-АЛГОРИТМИЧЕСКИМ МЕТОДОМ 1996
  • Чекушкин В.В.
RU2136041C1
Процессор матричной вычислительной структуры для решения дифференциальных уравнений в частных производных 1985
  • Золотовский Виктор Евдокимович
  • Коробков Роальд Валентинович
SU1280385A1
JP 3014173 A, 22.01.1991
US 6574650 B1, 03.06.2003.

RU 2 359 322 C1

Авторы

Хамухин Александр Анатольевич

Бабушкин Юрий Владимирович

Даты

2009-06-20Публикация

2007-11-12Подача