ПРИСАДОЧНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ АЛЮМИНИЕВЫХ СПЛАВОВ Российский патент 2010 года по МПК B23K35/28 C22C21/00 

Описание патента на изобретение RU2378095C2

Область техники изобретения

Настоящее изобретение относится к присадочным проволокам для сварки алюминиевых сплавов.

Уровень техники

В области сварки алюминиевых сплавов известно, что рост крупных зерен является нежелательным, так как он может привести к трещинам и образованию горячих трещин (“hot tearing”). Одним из способов предупреждения роста крупных зерен является введение циркония или титана в присадочную проволоку (сварочную проволоку). Традиционной присадочной проволокой для сварки деталей из алюминиевого сплава является проволока из алюминиевого сплава диаметром обычно от 0,8 до 3,2 мм, содержащая те химические элементы, которые требуется ввести в сварное соединение. В этом контексте следует различать основу сплава проволоки, которую выбирают по ее металлургической совместимости со свариваемыми изделиями, и присадки, роль которых заключается в том, чтобы модифицировать первичную структуру затвердевания сварного соединения. Основа сплава присадочной проволоки должна обеспечивать получение зоны сварного шва с повышенной механической прочностью. Но именно первичная структура затвердевания сварного соединения может являться источником дефектов, некоторые из которых заметны сразу, тогда как другие можно обнаружить только после эксплуатации сварной конструкции в течение некоторого времени.

Для данного рабочего режима сварки и при условии, что этот рабочий режим не привносит с собой дефектов сварки (т.е. его осуществляют в соответствии с правилами, принятыми в этой области техники), влияние химического состава присадочной проволоки на некоторые характеристики сварного шва может иметь большое значение.

В статье «Effects of grain refinement of aluminum weldability» авторов M.J. Dvornal, R.H. Frost и D.L. Oison, опубликованной в Weldability of Materials, ASM International 1990, указано, что эти элементы-присадки являются эффективными только в том случае, если они присутствуют в виде интерметаллических фаз типа TiAl3 или ZrAl3. В патенте US 5104456 (Colorado School of Mines) раскрыт способ изготовления присадочной проволоки, которая содержит эти фазы с контролируемыми формой, морфологией и гранулометрическим составом.

В заявке на патент ЕР 1249303 A1 (McCook Metals L.L.C.) раскрыта присадочная проволока для сварки на алюминиевой основе, содержащая цирконий и/или титан в концентрации более 0,25%, которая может также содержать элементы Sc, Hf, V, Mn, Cu, Fe и Si. Эта проволока была разработана для сварки плавлением сплава АА2195 (сплав типа Al-Cu-Li).

В отношении сплава АА2090 (также типа Al-Cu-Li) было отмечено, что введение Ti, Zr или Ti+B в присадочную проволоку из сплава 2319 или 4043 приводит к измельчению зерна в зоне сварного шва, что позволяет уменьшить образование горячих трещин в сварных соединениях деталей из сплава 2219. Наилучшие результаты были получены с использованием одного лишь циркония из расчета примерно 0,18% (см. работу «Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al-Li alloy» авторов G.D. Janaki Ram и др., опубликованную в журнале Materials Science and Engineering A276 (2000), стр.48-57).

В заявке на патент ЕР 0238758 (Martin Marietta) раскрыт способ сварки металлических композиционных материалов, при котором сварное соединение или присадочную проволоку получают путем in situ выделения керамики в металлической матрице. В случае композита алюминий-TiB2 присутствие свободного титана является нежелательным, так как оно может оказать нежелательное воздействие на вязкость жидкого металла при операции литья.

Кроме того, в области литейного производства алюминиевых сплавов известно использование модифицирующей («рафинирующей») проволоки, т.е. проволоки из алюминиевого сплава, содержащей добавки титана. Эта проволока обычно поставляется с диаметром 9,5 мм. Проволока, часто используемая для модифицирования алюминиевых сплавов, выполнена из сплава, содержащего 5% Ti и 1% В, который содержит частицы TiВ2 и свободный титан. Под свободным титаном понимают титан, не связанный с бором, но возможно связанный с алюминием в виде Al3Ti.

Задача, которую заявитель поставил перед собой в рамках настоящего изобретения, состоит в том, чтобы предложить новую присадочную проволоку для сварки, которая позволяет, по сравнению с традиционной сварочной проволокой, получить в сварном шве улучшенное модифицирование, т.е. более мелкодисперсное и более равномерное зерно, и которая одновременно позволяет получить высокую механическую прочность сварного соединения.

Объекты изобретения

Первым объектом настоящего изобретения является присадочная проволока на алюминиевой основе для сварки, отличающаяся тем, что она содержит от 0,3 до 6% титана, часть которого представлена в виде частиц TiB2 и/или TiC, а часть - в виде свободного титана.

Другим объектом настоящего изобретения является способ сварки плавлением для сварки алюминия или алюминиевого сплава, в котором используют присадочную проволоку на алюминиевой основе, содержащую частицы TiB2 и/или TiC.

Еще одним объектом настоящего изобретения является сварная конструкция, отличающаяся тем, что по меньшей мере один из ее сварных швов содержит частицы TiB2 и/или TiC.

Описание изобретения

а) Терминология

Если не указано иное, все указания, относящиеся к химическому составу сплавов, выражены в массовых процентах. Обозначение сплавов соответствует правилам Алюминиевой Ассоциации (The Aluminum Association), известным специалисту в данной области. Металлургические состояния определены в европейском стандарте EN 515. Стандартизированный химический состав алюминиевых сплавов определен, например, в стандарте EN 573-3. Размер зерен измеряли методом отсечений.

Если не указано иное, применяются определения, предусмотренные европейским стандартом EN 12258-1. Термин «лист» применяется здесь в отношении проката любой толщины.

b) Подробное описание изобретения

Согласно изобретению задачу решают путем применения присадочной проволоки на алюминиевой основе, содержащей частицы TiB2 и/или TiC и свободный титан. Общее содержание титана в ней должно составлять от 0,3 до 6%. Часть этого титана должна быть свободным титаном, т.е. не связанным с бором или углеродом. В преимущественном варианте реализации общее содержание свободного титана в присадочной проволоке составляет от 0,05% (предпочтительно - 0,10%) до 2,5% (предпочтительно - 1%, а еще более предпочтительно - 0,5%), так что содержание свободного титана в шве не превышает 0,80% (с учетом разбавления при сварке, при этом шов формируется путем затвердевания и кристаллизации жидкометаллической смеси, состоящей из металла присадочной проволоки, разбавленного металлом свариваемых деталей). Предпочтительно, чтобы общее содержание титана не превышало 6%. Содержание в пределах от 1% до 6% является удовлетворительным.

Если присадочная проволока содержит слишком много свободного титана, в сварном шве наблюдается образование первичных крупных фаз типа Al3Ti. Содержание свободного титана менее 0,05% не приводит к достаточно мелкому размеру зерна.

Сплав основы присадочной проволоки согласно изобретению может представлять собой сплав типа Al-Мg, например сплав, который соответствует стандартам по составу стандартизованных сплавов АА5183, АА5356 или АА5556 или АА5087, в который добавляют элементы Ti, B и C таким образом, чтобы образовались фазы TiB2 и/или TiC в требуемом количестве и требуемого гранулометрического состава. Предпочтительно, чтобы гранулометрический состав характеризовался либо узким (плотным) распределением размеров зародышей, либо небольшой долей мелких частиц. Предпочтительно, чтобы проволока согласно изобретению содержала частицы TiB2 и/или TiC, так что В 0,05-2 и/или С 0,05-1.

В частности, для сварки изделий из сплавов серии 5ххх предпочтительной является присадочная проволока, содержащая (в % по массе):

Мg 3-5,5 Mn 0,05-1,0 Cr 0-0,25 Fe 0-0,50 Cu 0-0,10 Si 0-0,50 Zn 0-0,25 V 0-0,25 Ti 0,3-10 Zr 0-0,25 Be 0-0,0008

В преимущественных вариантах реализации, которые могут быть совмещены, содержание Мg в этой присадочной проволоке предпочтительно составляет от 4,0 (а еще более предпочтительно - 4,3) до 5,2%, содержание Cr в ней составляет от 0,05 до 0,20%, а содержание Ве в ней не превышает 0,0005%, а предпочтительно - не превышает 0,0003%, так как стандарты, применимые к присадочной проволоке для сварки (например, стандарт EN 18273), стремятся ограничить содержание бериллия до 0,0003%.

Указанные присадочные проволоки из сплава Al-Мg согласно изобретению являются особенно пригодными для сварки сплавов серии 5ххх, серии 6ххх, а также не содержащих меди сплавов серии 7ххх.

Изобретение может быть также реализовано со сплавом основы типа 1ххх, 2ххх, 3ххх и 4ххх. В качестве примера в преимущественном варианте реализации используется сплав основы, содержащий от 4 до 13% кремния; из необязательных элементов, которые этот сплав основы может содержать, можно назвать магний в количестве от 0,10 до 0,50%. В этом преимущественном варианте реализации сплав основы предпочтительно выбирают из группы, состоящей из сплавов АА4043, АА4043А, АА4643, АА4145, АА4145А, АА4047, АА4047А, АА4147, АА4009, АА4010.

В целом, является предпочтительным, чтобы общее содержание титана в сплавах основы составляло от 1 до 6%. Предпочтительно, чтобы гранулометрический состав характеризовался либо узким распределением размеров зародышей, либо небольшой долей мелких частиц.

Присадочную проволоку из сплава серии 1ххх, 2ххх и 3ххх согласно изобретению применяют главным образом для сварки изделий, относящихся к тому же семейству, что и присадочная проволока. Присадочная проволока из сплава серии 4ххх согласно изобретению имеет более широкий спектр применения. Применение присадочной проволоки согласно изобретению для сварки плавлением алюминия или алюминиевого сплава дает сварной шов, характеризующийся более мелким средним размером зерна, чем при применении присадочной проволоки согласно уровню техники. Размер зерна в центре шва («в сердцевине»), получаемый в случае способа согласно изобретению, обычно составляет менее 80 мкм, предпочтительно - менее 40 мкм, а оптимальным образом - менее 25 мкм. Предпочтительно также, чтобы размер зерна был как можно более однородным от центра шва к его периферии.

Технический результат изобретения, т.е. уменьшение размера зерна сварного шва, наблюдается в присутствии частиц TiB2 и/или TiC. Последние служат, вероятно, центрами зародышеобразования. В качестве примера, проволока состава (1,6% Ti + 1,4% В), известная в качестве модифицирующей проволоки, которая содержит по существу частицы AlB2, не оказывает влияния на размер зерна сварного соединения. Присутствие и гранулометрический состав частиц TiB2 и TiC в проволоке согласно изобретению или в сварном шве сварной конструкции согласно изобретению могут быть определены с помощью сканирующего электронного микроскопа (сокращенно СЭМ или SEM, Scanning Electron Microscopy), предпочтительно - с использованием электронной пушки с холодным катодом (FEG - Field Effect Gun).

Присутствие избытка свободного Ti в проволоке приводит к образованию в сварных швах нежелательных выделений Al3Ti. По этой причине желательно ограничивать содержание свободного Ti в проволоке.

Кроме того, желательно, чтобы гранулометрический состав частиц TiB2 и TiC был регулируемым: желательно иметь либо узкое распределение размеров частиц, либо небольшую долю мелких частиц (<2 мкм) для того, чтобы избежать образования слоев (пластов) частиц в сварных швах.

Присадочная проволока согласно изобретению может быть применена для любых технологий сварки плавлением, таких как дуговая сварка металлическим плавящимся электродом в среде инертного газа (MIG), дуговая сварка вольфрамовым электродом в среде инертного газа (TIG) или лазерная сварка. Предпочтительным примером лазерной сварки является сварка листов из АА6056 проволокой на основе АА4047.

Изобретение далее поясняется с помощью примеров, которые, тем не менее, не носят ограничивающего характера.

Примеры

Восемь модифицирующих проволок диаметром примерно 9,5 мм, выпускаемых промышленностью, подвергали волочению до окончательного диаметра 3,2 мм. Промежуточный отжиг не требовался. После волочения осуществляли отжиг в течение 3 часов при 350°С. Затем проволоки выпрямляли и разрезали на прутки длиной 800 мм и, наконец, обезжиривали. В таблице 1 представлены модифицирующие проволоки. В таблице 2 представлена использованная последовательность волочения. Проволоки из АА5183 и AА1100 служили контрольными.

Таблица 1
Состав проволок
Обозначение Состав Микроструктура Свободный Ti AT5B Ti 5,3%, B 1,1%, Аl 2,9% Si 0,06%, Fe 0,15%, Аl, связанный с V 0,05% Ti (Al3Ti), + Ti, связанный с В (TiВ2) AT5B0,2 Ti 5,0%, B 0,2%, Аl 4,6% Si 0,06%, Fe 0,17%, Аl, связанный с Ti (Al3Ti), + Ti, связанный с В (TiВ2) AlTiC Ti 3%, C 0,15%, Аl 2,4% Si 0,06%, Fe 0,17%, Аl, связанный с V 0,15% Ti (Al3Ti), + Ti, связанный с C (TiС) AlT1,2В0,5 Ti 1,2%, B 0,5%, Аl 0,1% Si 0,06%, Fe 0,12%, Ti, связанный с V 0,02% В (TiВ2) AlT1,6B1,4 Ti 1,6%, B 1,4% Аl + - Аl, связанный с В (AlB2), Ti, связанный с В (TiВ2) AlTi6 Ti 5,7%, Si 0,07%, Аl + 5,7% Fe 0,17%, V 0,05% Аl, связанный с Ti (Al3Ti) AA5183 Стандартный состав контрольного образца AA1100 Максимальное содержание: Si 0,30, Fe 0,40, Cu 0,05, Mn 0,05, Мg 0,05, Zn 0,07, Ti 0,05

Таблица 2
Последовательность волочения
Стадия волочения 1 2 3 4 5 6 7 8 9 D (мм) 9,5 8,35 7,2 6,4 5,5 5,13 4,45 3,91 3,46 3,2 Относительное сужение (%) 22,7 25,6 21,0 26,1 13,0 24,8 22,8 21,7 14,5

Из листов из сплава АА5088 в состоянии Н111 исходной толщиной 8 мм путем строжки поверхности (обточки) получали детали толщиной 3 мм. После очистки кромок щеткой эти детали сварили вручную методом TIG, применяя одинаковый для каждой проволоки рабочий режим. Рабочие условия были следующие:

- скорость сварки: 100 мм/мин;

- сварочный ток (регулировка тока): примерно 80 А, переменный ток;

- газ: чистый аргон;

- сопло диаметром 12 мм, электрод диаметром 3 мм.

Швы характеризовали микрографическим анализом. Модифицирующий эффект оценивали по размеру зерен и однородности зеренной структуры в шве и вдоль сварного соединения. По длине шва брали 5 проб с тем, чтобы определить микроструктуру и однородность зеренной структуры. Были сделаны следующие наблюдения:

а) в швах, сваренных с проволокой АТ5В и с проволокой АТ5В0,2, обнаружили фазы Al3Ti в виде первичных крупных частиц (≈30 мкм) и TiВ2, вероятно содержавшиеся изначально в модифицирующей проволоке. Отметили также присутствие скопления, которое предположительно состояло из частиц TiВ2, делающих микроструктуру гетерогенной;

b) в швах, сваренных с проволокой AlTiC, обнаружили фазу Al3Ti в виде первичных крупных частиц;

с) в швах, сваренных с проволокой AlT1,2B0,5, обнаружили фазу TiB2, но лучше распределенную в микроструктуре по сравнению с АТ5В и АТ5В0,2;

d) в швах, сваренных с проволокой AlT1,6B1,4, обнаружили выделения TiB2, но лучше распределенные в микроструктуре по сравнению с АТ5В и АТ5В0,2. Фаза AlB2 безусловно присутствовала, но не была четко идентифицирована;

e) в швах, сваренных с проволокой АlTi6, обнаружили фазу Al3Ti, ее выделение происходило в виде первичных крупных частиц, которые были отмечены и в других образцах, а также в виде скопления тонких палочек.

Размер зерна в сварном шве оценивали методом отсечений. Результаты представлены в таблице 3.

Таблица 3 Обозначения использованных проволок 1100 5183 АТ1,6В1,4 AlTiC AT5B AT1,2B0,5 AT5B0,2 AlTi6 Сердцевина 800 150 800 20 12 16 11 25 Периферия 50 150 50-300 40-50 12 16 30 50-70

Было установлено, что:

а) использование модификаторов, таких как AlTi6, AlTiC, AT5B, AT1,2B0,5 и AT5B0,2, уменьшает размер зерен;

b) проволока АТ1,6В1,4 не влияет на размер зерна (по сравнению со швом, полученным с проволокой 1100);

с) было отмечено, что сварные швы, выполненные с проволокой AT5B и AT5B0,2, имеют малый размер зерен. Однако микрографические исследования после анодного окисления выявили присутствие на верху шва более крупных зерен, а также присутствие темных участков (несомненно соответствующих скоплениям TiB2), которые делают структуру всего шва в целом гетерогенной;

d) швы, сваренные с проволокой АТ5В и АlTi6, не являются однородными по длине листа и содержат зерна, более крупные на периферии ЗТВ.

Исходя из всех указанных результатов в целом, очевидно, что:

а) присутствие выделений TiB2 или TiC приводит к значительному модифицированию («измельчению») шва, а при выделениях AlB2 - нет;

b) присутствие свободного титана также приводит к измельчению зерна в шве, но этот эффект является менее явным, чем полученный с выделениями TiB2 или TiC (сравнение проволоки АlТi6 с проволокой АlТ5В);

с) избыток свободного титана в сварочной проволоке приводит к образованию крупных первичных выделений в сварном шве (сравнение АТ5В, АТ5В0,2 с АТ1,2В0,5).

Похожие патенты RU2378095C2

название год авторы номер документа
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2001
  • Каблов Е.Н.
  • Лукин В.И.
  • Иода Е.Н.
  • Лоскутов В.М.
  • Савичева Е.Ю.
RU2210613C2
СПОСОБ ПОЛУЧЕНИЯ СВАРНОЙ СТАЛЬНОЙ ЗАГОТОВКИ И СООТВЕТСТВУЮЩАЯ СВАРНАЯ СТАЛЬНАЯ ЗАГОТОВКА 2019
  • Шмит, Франсис
  • Пуарье, Мариа
  • Альварес, Кристиан
  • Гутон, Люсиль
  • Давид, Тьерри
  • Вьё, Иван
RU2783829C1
СПОСОБ СВАРКИ СТАЛЬНЫХ ЛИСТОВ С ПОКРЫТИЕМ 2019
  • Бруггер, Геральд
RU2756285C1
СОСТАВ СВАРОЧНОЙ ПРОВОЛОКИ 2010
  • Орыщенко Алексей Сергеевич
  • Малышевский Виктор Андреевич
  • Вайнерман Абрам Ефимович
  • Баранов Александр Владимирович
  • Пичужкин Сергей Александрович
  • Веретенников Михаил Михайлович
RU2446929C1
ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Маннинен, Тимо
  • Кела, Юха
  • Юути, Тимо
RU2808643C2
СВАРОЧНЫЕ ПРОВОЛОКИ, ПОЛУЧЕННЫЕ ИЗ УЛУЧШЕННЫХ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ 2019
  • Чжан, Шэньцзя
  • Во, Нхон К.
  • Секунда, Януш Станислав
  • Билодо, Жан
  • Лекур, Мартен
RU2770131C2
Способ получения однородной и бездефектной микроструктуры в алюминиевых сплавах посредством лазерного плавления (варианты) 2023
  • Солонин Алексей Николаевич
  • Логинова Ирина Сергеевна
  • Халил Асмаа Мостафа
RU2814120C1
МЕТАЛЛЫ СВАРНОГО ШВА С ВЫСОКОЙ ВЯЗКОСТЬЮ И ПРЕВОСХОДНЫМ СОПРОТИВЛЕНИЕМ ПЛАСТИЧЕСКОМУ РАЗРЫВУ 2011
  • Фэйрчайлд,Дуглас,П.
  • Макиа,Марио,Л.
  • Форд,Стивен,Дж.
  • Ниссли,Нейтон,Э.
  • Айер,Рагхаван
  • Дзин,Хиун-Воо
  • Озексин,Аднан
RU2584621C2
Титановая сварочная проволока, контролируемые ультразвуком сварные швы и сформированные из них детали и соответствующие способы 2015
  • Бернат, Джеффри Дж.
  • Тамирисакандала, Сеш А.
RU2705751C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Каблов Е.Н.
  • Петраков А.Ф.
  • Лукин В.И.
  • Петраковский С.А.
  • Жирнов А.Д.
  • Иода Е.Н.
  • Лоскутов В.М.
  • Истомин А.Г.
RU2180929C2

Реферат патента 2010 года ПРИСАДОЧНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ АЛЮМИНИЕВЫХ СПЛАВОВ

Изобретение может быть использовано для любых технологий сварки плавлением, в частности для сварки в инертных газах плавящимся электродом, вольфрамовым электродом, для лазерной сварки. Присадочная проволока на алюминиевой основе содержит от 0,1 до 6 мас.% титана, часть которого представлена в виде частиц TiB2 и/или TiC, а другая часть - в виде свободного титана. В качестве необязательных элементов она может содержать магний, марганец, хром, железо, кремний, цинк, ванадий, цирконий, бериллий. Проволока может быть выполнена на основе сплава серии 5ххх или серии 4ххх. Ее применение приводит к получению сварного соединения с более мелкодисперсным зерном, обеспечивающим его высокую механическую прочность. 3 н. и 15 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 378 095 C2

1. Присадочная проволока на алюминиевой основе для сварки алюминия или алюминиевого сплава, отличающаяся тем, что она содержит от 0,3 до 6 мас.% титана, часть которого представлена в виде частиц TiB2 и/или TiC, a часть - в виде свободного титана, так что общее содержание свободного титана в присадочной проволоке составляет от 0,05 до 2,5 мас.%.

2. Присадочная проволока по п.1, отличающаяся тем, что она дополнительно содержит (мас.%) по меньшей мере один из элементов В 0,05-2 и С 0,05-1.

3. Присадочная проволока по п.1 или 2, отличающаяся тем, что она дополнительно содержит элементы, мас.%:
Mg 3-5,5 Si 0-0,50 Be 0-0,0008 Mn 0,05-1,0 Zn 0-0,25 Сr 0-0,25 V 0-0,25 Fe 0-0,50 Zr 0-0,25

4. Присадочная проволока по п.3, отличающаяся тем, что содержание в ней Mg составляет от 4,0 до 5,2 мас.%.

5. Присадочная проволока по п.4, отличающаяся тем, что содержание в ней Mg составляет от 4,3 до 5,2 мас.%.

6. Присадочная проволока по п.3, отличающаяся тем, что содержание в ней Сr составляет от 0,05 до 0,25 мас.%.

7. Присадочная проволока по п.3, отличающаяся тем, что содержание в ней Be не превышает 0,0005 мас.%, а предпочтительно не превышает 0,0003 мас.%.

8. Присадочная проволока по п.2, отличающаяся тем, что сплав основы выбран из группы, состоящей из сплавов АА5183, АА5356, АА5556, АА5087.

9. Присадочная проволока по п.1 или 2, отличающаяся тем, что она дополнительно содержит от 4 до 13 мас.% кремния.

10. Присадочная проволока по п.9, отличающаяся тем, что она дополнительно содержит от 0,10 до 0,50 мас.% магния.

11. Присадочная проволока по п.9, отличающаяся тем, что сплав основы выбран из группы, состоящей из сплавов АА4043, АА4043А, АА4643, АА4145, АА4145А, АА4047, АА4047А, АА4147, АА4009, АА4010.

12. Присадочная проволока по п.2 или 8, отличающаяся тем, что она содержит от 0,05 до 1 мас.%, а предпочтительно от 0,10 до 0,5 мас.% свободного титана.

13. Присадочная проволока по п.3, отличающаяся тем, что она содержит от 0,05 до 1 мас.%, а предпочтительно от 0,10 до 0,5 мас.% свободного титана.

14. Присадочная проволока по п.9, отличающаяся тем, что она содержит от 0,05 до 1 мас.%, а предпочтительно от 0,10 до 0,5 мас.% свободного титана.

15. Присадочная проволока по п.1, отличающаяся тем, что общее содержание в ней Ti составляет от 1 до 6 мас.%.

16. Способ сварки плавлением алюминия или алюминиевого сплава, в котором используют присадочную проволоку по любому из пп.1-15.

17. Сварная конструкция из алюминия или алюминиевого сплава, отличающаяся тем, что по меньшей мере один из ее сварных швов содержит частицы ТiВ2 и/или TiC и получен с использованием присадочной проволоки по любому из пп.1-15.

18. Сварная конструкция по п.17, отличающаяся тем, что средний размер зерна в центре упомянутого шва составляет менее 80 мкм, предпочтительно менее 40 мкм, а еще более предпочтительно менее 25 мкм.

Документы, цитированные в отчете о поиске Патент 2010 года RU2378095C2

АНКЕР ДЛЯ ЗАКРЕПЛЕНИЯ АРМАТУРНЫХ ПУЧКОВ ПРОВОЛОКИ С ВЫСАЖЕННЫМИ ГОЛОВКАМИ 0
SU238758A1
Способ определения остаточных радиальных напряжений в кольцах 1984
  • Белоусов Анатолий Петрович
  • Табуев Аркадий Михайлович
  • Еремин Борис Георгиевич
  • Димитриенко Иван Павлович
SU1249303A1
Приемник частотно-модулированных колебаний со следящим гетеродином 1982
  • Кирик Юрий Михайлович
  • Марголин Юрий Носонович
SU1046945A1
RU 2018425 C1, 30.08.1994
SU 1600176 A1, 20.12.1996
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1999
  • Лукин В.И.
  • Иода Е.Н.
  • Филатов Ю.А.
  • Арзамасов В.Б.
  • Иода А.А.
  • Грушко О.Е.
  • Лоскутов В.М.
RU2148101C1

RU 2 378 095 C2

Авторы

Коттиньи Лоран

Стрипполи Жерен Клодин

Жарри Филипп

Энон Кристин

Сигли Кристоф

Даты

2010-01-10Публикация

2005-08-31Подача