Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, используемым для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температурах свыше 1000°С, методами направленной кристаллизации и монокристаллического литья.
Известен жаропрочный сплав для монокристаллического литья на основе никеля, содержащий следующие компоненты, мас.%: хром 2,1 - 3,3, кобальт 5,0 - 7,0, молибден 3,5 - 5,0, вольфрам 3,2 - 4,8, тантал 4,0 - 5,0, рений 5,6 - 7,0, рутений 2,0 - 6,0, алюминий 5,7 - 6,3, углерод 0,002 - 0,02, бор 0,0004 - 0,004, иттрий 0,002 - 0,2, церий 0,001 - 0,02, лантан 0,002 - 0,25, неодим 0,0005 - 0,01, никель - остальное (патент RU N22293782, МПК С22С 19/05, опубл. в 2007 г.).
Указанный сплав обладает достаточно высоким уровнем длительной прочности и стабилен при работе в условиях высоких температур, однако его недостатком является легирование дорогими и дефицитными элементами, прежде всего рением, а также элементом платиновой группы рутением. Кроме того, у сплавов, предназначенных для работы при температурах свыше 1000°С, стойкость к высокотемпературной газовой коррозии становится одной из важнейших характеристик, определяющих их работоспособность. В связи с этим требуется осуществление дополнительного легирования, направленного на повышение указанной характеристики, поскольку в сплаве-прототипе содержание хрома и кобальта, обеспечивающих защитные свойства материала, снижено.
Задачей изобретения является повышение высокотемпературной прочности и жаростойкости сплава при уменьшении его стоимости.
Указанная задача решается тем, что в известный жаропрочный литейный сплав на основе никеля, содержащий хром, кобальт, вольфрам, алюминий, тантал, рений, углерод, иттрий, лантан, церий и неодим, дополнительно введены скандий, кремний и магний при следующем соотношении компонентов, мас.%:
В заявленном сплаве увеличено количество тантала и вольфрама, чтобы компенсировать и даже усилить полезное влияние на структуру и свойства рения, содержание которого в сплаве снижено. Кроме того, из заявленного сплава полностью исключен элемент платиновой группы рутений, а также бор.
Химический состав предлагаемого сплава разработан на базе реализации методов интеллектуальной инженерии, включающей оценку следующих факторов: прогнозируемого уровня структурной стабильности, а именно вероятности образования топологически плотноупакованных и карбидных фаз, формирования эвтектических колоний (γ+γ') фаз и фаз с объемно-центрированной кубической решеткой при длительной наработке; кинетики диффузионного огрубления изолированных выделений γ' - фазы в матрице и пластинчатой рафт-структуры в монокристаллах.
В результате проведенного анализа было установлено, что в составе предложенного сплава вероятность образования нежелательных фаз мала и сам состав хорошо сбалансирован.
Значительное повышение качества сплава предложенного состава обеспечивается также дополнительным легированием его магнием, скандием и кремнием.
Введение магния заметно улучшает деформируемость никелевого жаропрочного сплава. Кроме того, оно способствует улучшению процесса распада γ-твердого раствора и образованию более дисперсной γ'-фазы, стабилизации структуры и замедлению процессов коагуляции упрочняющих частиц на базе интерметаллида Ni3Al, снижению диффузионной подвижности и совершенствованию межфазных границ. Поэтому введение магния в состав литейного жаропрочного сплава с направленной и монокристальной структурой обеспечило дополнительное повышение его жаропрочности.
Введение скандия значительно увеличивает жаростойкость предложенного сплава. Кроме того, он повышает технологичность при обработке материала давлением, а также оказывает рафинирующее действие, связывая серу, фосфор и другие вредные примеси.
Введение в состав предлагаемого сплава кремния обеспечивает дополнительное повышение его жаростойкости.
Указанные элементы совместно с лантаном, иттрием, церием и неодимом при концентрации в приведенных пределах оказывают совокупное влияние на жаропрочность и стойкость к высокотемпературному окислению, которые существенно выше суммарного влияния этих элементов.
Для апробации сплава были выплавлены три состава, содержащие компоненты в % по массе, представленные в таблице 1. Предлагаемый сплав выплавляли в вакуумной индукционной печи, а затем переплавляли в печи для направленной кристаллизации с применением затравок с заданной ориентацией. Свойства полученных сплавов приведены в таблице 2.
Сопоставление времен до разрушения известного и предложенного сплавов показывает, что по удельной долговечности σdл/d (d - удельный вес сплава) предложенный сплав, по крайней мере, не уступает известному сплаву.
При этом, учитывая, что в его составе присутствуют элементы, обладающие наиболее низкой диффузионной подвижностью при высоких температурах, в процессе эксплуатации предложенного сплава в области температур свыше 1100°С его преимущества по сравнению с прототипом становятся особо значительными.
Предложенный сплав обладает оптимальной структурой - в его составе наблюдается практически незначительное количество эвтектической γ'-фазы, отсутствуют α-фазы на основе вольфрама, рения, хрома, т.е. все введенные в сплав элементы обеспечивают необходимый вклад в увеличение жаропрочности. По сравнению со сплавом-прототипом он обладает более высокой структурной стабильностью - температура полного растворения в нем γ'-фазы составляет 1360-1366°С, в то время как в сплаве-прототипе 1320-1340°С. Стоимость предложенного материала оказывается более чем в два раза ниже стоимости известного сплава в зависимости от выбора конкретных композиций в заявленных диапазонах концентраций легирующих элементов, в его составе отсутствует остродефицитный рутений и снижено содержание рения, что обеспечивает решение задачи производства сплава в необходимом количестве.
название | год | авторы | номер документа |
---|---|---|---|
Литейный жаропрочный никелевый сплав с монокристаллической структурой | 2021 |
|
RU2769330C1 |
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ (ВАРИАНТЫ) | 2007 |
|
RU2348725C2 |
Литейный жаропрочный никелевый сплав с монокристальной структурой для лопаток газотурбинных двигателей | 2024 |
|
RU2821248C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ КОТЛОВ И ПАРОВЫХ ТУРБИН, РАБОТАЮЩИХ ПРИ УЛЬТРАСВЕРХКРИТИЧЕСКИХ ПАРАМЕТРАХ ПАРА | 2017 |
|
RU2637844C1 |
ЛИТЕЙНЫЙ НИКЕЛЕВЫЙ СПЛАВ С РАВНООСНОЙ СТРУКТУРОЙ | 2015 |
|
RU2685455C2 |
ЛИТЕЙНЫЙ НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ | 2010 |
|
RU2446221C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2009 |
|
RU2402624C1 |
ЛИТЕЙНЫЙ НИКЕЛЕВЫЙ СПЛАВ С ПОВЫШЕННОЙ ЖАРОПРОЧНОСТЬЮ И СТОЙКОСТЬЮ К СУЛЬФИДНОЙ КОРРОЗИИ | 2015 |
|
RU2623940C2 |
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2010 |
|
RU2439185C1 |
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2015 |
|
RU2626118C2 |
Изобретение относится к области металлургии, а именно к жаропрочным литейным сплавам на основе никеля, используемым для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температурах свыше 1000°С, методами направленной кристаллизации и монокристаллического литья. Сплав содержит, мас.%: хром до 3,0, кобальт до 5,0, вольфрам 8,0-12,0, алюминий 4,3-5,6, тантал 9,0-13,0, рений 4,0-6,0, углерод 0,002-0,05, иттрий 0,003-0,1, лантан 0,001-0,2, церий 0,003-0,1, неодим до 0,01, скандий 0,05-0,1, кремний 0,05-1,0, магний 0,01-0,15, никель - остальное. Повышается высокотемпературная прочность и жаростойкость сплава. 2 табл.
Жаропрочный литейный сплав на основе никеля, содержащий хром, кобальт, вольфрам, алюминий, тантал, рений, углерод, иттрий, лантан, церий и неодим, отличающийся тем, что в него дополнительно введены скандий, кремний и магний при следующем соотношении компонентов, мас.%:
НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2005 |
|
RU2293782C1 |
СПОСОБ РАЗРАБОТКИ ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ | 1991 |
|
RU2029857C1 |
WO 2008046708 A1, 24.04.2008 | |||
US 6177046 B1, 23.01.2001. |
Авторы
Даты
2010-03-10—Публикация
2008-10-29—Подача