СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ, ИЗДЕЛИЙ И СВАРНЫХ КОНСТРУКЦИЙ ИЗ ВЫСОКОПРОЧНЫХ АЛЬФА-ТИТАНОВЫХ СПЛАВОВ Российский патент 2010 года по МПК C22F1/18 

Описание патента на изобретение RU2393266C1

Изобретение относится к термической обработке полуфабрикатов, изделий и сварных конструкций из высокопрочных титановых α-сплавов с содержанием β-фазы до 15%. Изобретение может быть использовано на предприятиях цветной металлургии, судостроительной, авиационной промышленности, изготавливающих полуфабрикаты, изделия и сварные конструкции из высокопрочных титановых сплавов; α-сплавов.

Известны различные способы термической обработки титановых псевдо α-сплавов, в том числе отжиг при температурах 670-850°С [1-4].

Однако известные способы термической обработки, применяемые для ряда полуфабрикатов, таких как толстолистовой крупногабаритный прокат, цельнокатаные кольца, кольцевые поковки из высокопрочных титановых сплавов с небольшим количеством β-фазы и содержанием А1 свыше 5% и изделий, сварных конструкций из них, обладают недостатками. Например, отжиг, представленный в авторском свидетельстве №707989 [2], который позволяет повысить сопротивляемость развитию разрушения в морской воде. Недостаток этого способа заключается в том, что в результате охлаждения с предлагаемой скоростью более 40°С/мин в интервале температур 800-400°С в конструкциях и полуфабрикатах создаются значительные остаточные внутренние напряжения, что приводит к искажениям геометрии изделий.

Наиболее близким к изобретению по техническому исполнению является отжиг для снятия остаточных сварочных напряжений, представленный в [3], который обеспечивает снятие остаточных напряжений, но приводит к существенному снижению характеристик трещиностойкости в морской воде.

Способ включает посадку металла в холодную печь, нагрев с печью с наибольшей скоростью, допускаемой тепловой мощностью печи до температуры 660°C±10°C, выдержку из расчета не менее 1 мин на 1 мм толщины наибольшего сечения; охлаждение в печи со скоростью 0,67°С/мин до 300±10°С, ниже 300°С - охлаждение на воздухе. Такой режим медленного охлаждения в интервале температур от 600°С до 400°С способствует расслоению α-твердого раствора с образованием отдельных зон, обогащенных алюминием. Образование этих зон, имеющих более отрицательный электрохимический потенциал, чем α-фаза, приводит к появлению склонности к коррозионному растрескиванию металла изделий из высокопрочных титановых псевдоα-сплавов.

Техническим результатом предлагаемого изобретения является снижение склонности к коррозионному растрескиванию металла полуфабрикатов, изделий и сварных конструкций из высокопрочных титановых α-сплавов.

Поставленный технический результат достигается за счет того, что в способе термической обработки высокопрочных титановых α-сплавов, включающем посадку металла в холодную печь, нагрев с печью с наибольшей скоростью, допускаемой тепловой мощностью печи, до температуры 675±10°С, выдержку при этой температуре из расчета не менее 1 мин на 1 мм толщины наибольшего сечения; согласно изобретению охлаждение выполняют со скоростью 1,5÷2°С/мин до температуры 580±10°С, далее на воздухе.

Выдержка при 675±10°С и охлаждение со скоростью 1,5÷2°С/мин до температуры 580±10°С обеспечивают снятие исходных остаточных напряжений в металле. Повышение температуры выдержки нецелесообразно из-за опасного газонасыщения поверхностных слоев изделий. Повышение скорости охлаждения с 0,67°С/мин до 1,5÷2°С/мин не приводит к искажениям геометрии изделий.

Исследованиями установлено, что в интервале температур 580-400°С при скорости 0,67°С/мин происходит расслоение α-твердого раствора с образованием α2-фазы, что приводит к увеличению склонности металла к коррозионному растрескиванию.

Охлаждение на воздухе в интервале температур 580-400°С предотвращает расслоение α-твердого раствора и позволяет повысить стойкость металла к коррозионному растрескиванию.

Пример конкретного выполнения

Предлагаемый и известный способы проверяли на металле цельнокатаного кольца с толщиной стенки 72 мм и на металле катаной плиты толщиной 50 мм. Металл этих полуфабрикатов имел следующий химический состав: 5,49%Al; 1,51%V; 1,40%Mo; 0,12%С; 0,10%O.

По известному способу металл полуфабрикатов был нагрет до температуры 660°С, металл цельнокатаного кольца выдержан при данной температуре в течение 72 минут, металл катаной плиты в течение 50 минут, охлаждение вели в печи со скоростью 0,67°С/мин до 300°С, далее на воздухе.

По предлагаемому способу металл полуфабрикатов был нагрет до температуры 675°С, металл цельнокатаного кольца выдержан при данной температуре в течение 72 минут, металл катаной плиты в течение 50 минут, охлаждение вели в печи со скоростью 1,5°С/мин и 2°С/мин до температуры 580°С, далее на воздухе.

Из полуфабрикатов были изготовлены и испытаны на трехточечный изгиб в морской воде образцы сечением 35×70 мм по ГОСТ 25.506-85.

Результаты испытаний представлены в таблице.

Использование предлагаемого способа обработки изделий из высокопрочных титановых α-сплавов обеспечивает по сравнению с существующими способами уменьшение остаточных напряжений и искажений геометрии изделий и повышение сопротивления развитию разрушения в коррозионной среде на 23-44%.

Технико-экономический эффект от использования изобретения по сравнению с прототипом выразится в повышении надежности и долговечности конструкций из высокопрочных титановых α-сплавов за счет снижения склонности их к коррозионному растрескиванию.

Источники информации

1. Колачев Б.А., Полькин И.С., Талалаев В.Д. и др. «Титановые сплавы разных стран». М.: «ВИЛС», 2000, с.81-95.

2. Авторское свидетельство СССР №707989.

3. Лясоцкая В.С.«Термическая обработка сварных соединений титановых сплавов». М.: «Экомет», 2003, с.180-183.

4. Моисеев В.Н., Куликов Ф.Р., Кириллов Ю.Г. и др. «Сварные соединения титановых сплавов». М.: «Металлургия», 1979, с.80-92.

5. Колачев Б.А., Полькин И.С. и др. «Титановые сплавы разных стран», М.: ВИЛС, 2000, с.16

Похожие патенты RU2393266C1

название год авторы номер документа
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИСТОВОГО ПРОКАТА ИЗ ПСЕВДО-АЛЬФА ТИТАНОВОГО СПЛАВА МАРКИ ВТ18У 2018
  • Калиенко Максим Сергеевич
  • Волков Анатолий Владимирович
  • Ледер Михаил Оттович
  • Берестов Александр Владимирович
  • Водолазский Валерий Федорович
RU2681236C1
СПЛАВ НА ОСНОВЕ ТИТАНА (ВАРИАНТЫ) И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Ширяев Андрей Александрович
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2606677C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2007
  • Сенаторова Ольга Григорьевна
  • Ткаченко Евгения Анатольевна
  • Сидельников Василий Васильевич
  • Красова Екатерина Вячеславовна
  • Варнавская Наталья Викторовна
  • Блинова Надежда Евгеньевна
  • Бабанов Виталий Викторович
RU2356999C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ 2012
  • Михайлов Евгений Дмитриевич
  • Малинин Юрий Павлович
  • Иванова Людмила Ивановна
  • Зорихин Дмитрий Валерьевич
RU2492274C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2018
  • Ковальчук Михаил Валентинович
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Кулик Вера Петровна
  • Третьякова Наталья Валерьевна
  • Ледер Михаил Оттович
RU2690257C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 1992
  • Тарасов А.Н.
  • Тарасов В.Н.
RU2031182C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2014
  • Каблов Евгений Николаевич
  • Ткаченко Евгения Анатольевна
  • Милевская Тамара Васильевна
  • Вахромов Роман Олегович
  • Антипов Владислав Валерьевич
  • Селиванов Андрей Аркадьевич
RU2576283C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2020
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Легких Антон Николаевич
RU2771396C1
Способ термической обработкиСВАРиВАЕМыХ АлюМиНиЕВыХ СплАВОВ 1976
  • Мироненко Виктор Николаевич
  • Евстифеев Виктор Сергеевич
  • Барабохин Николай Семенович
  • Шиганов Николай Васильевич
  • Казаков Вячеслав Аркадьевич
  • Власова Тамара Алексеевна
  • Силис Валентина Эгоновна
SU850729A1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2004
  • Колобнев Н.И.
  • Хохлатова Л.Б.
  • Сетюков О.А.
  • Волошина Е.Е.
  • Можаровский С.М.
  • Бурляева И.П.
RU2256720C1

Реферат патента 2010 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ, ИЗДЕЛИЙ И СВАРНЫХ КОНСТРУКЦИЙ ИЗ ВЫСОКОПРОЧНЫХ АЛЬФА-ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к термической обработке полуфабрикатов, изделий и сварных конструкций из высокопрочных α-титановых сплавов, которое может быть использовано в судостроительной и авиационной отраслях промышленности. Предложен способ термической обработки полуфабрикатов, изделий и сварных конструкций из высокопрочных α-титановых сплавов. Способ включает посадку металла в холодную печь, нагрев с наибольшей скоростью, допускаемой тепловой мощностью нагревательного устройства, до температуры 675±10°С, выдержку из расчета не менее 1 мин на 1 мм толщины наибольшего сечения. Охлаждение проводят со скоростью 1,5-2°С/мин до температуры 580±10°С, а далее на воздухе. Снижается склонность к коррозионному растрескиванию. 1 табл.

Формула изобретения RU 2 393 266 C1

Способ термической обработки полуфабрикатов, изделий и сварных конструкций из высокопрочных α-титановых сплавов, включающий посадку металла в холодную печь, нагрев с наибольшей скоростью, допускаемой тепловой мощностью нагревательного устройства, до температуры (675±10)°С, выдержку из расчета не менее 1 мин на 1 мм толщины наибольшего сечения, отличающийся тем, что охлаждение проводят со скоростью 1,5-2°С/мин до температуры (580±10)°С, а далее на воздухе.

Документы, цитированные в отчете о поиске Патент 2010 года RU2393266C1

Способ термической обработки деформированных полуфабрикатов из высокопрочных титановых -сплавов 1975
  • Бодунова Майя Борисовна
  • Горынин Игорь Васильевич
  • Денисенко Галина Ивановна
  • Кудрявцев Анатолий Сергеевич
  • Филиппов Павел Федорович
  • Хесин Юлий Данилович
  • Чечулин Борис Борисович
  • Каган Эмиль Семенович
  • Соболев Юрий Васильевич
  • Бекенев Сергей Романович
SU707989A1
Способ термической обработки листовых сварных соединений псевдо @ - и ( @ + @ )-титановых сплавов 1987
  • Лясоцкая Виолета Святославовна
  • Каленова Марина Викторовна
  • Кулик Надежда Викторовна
  • Князева Светлана Ивановна
  • Сусекова Ирина Валентиновна
SU1578225A1
Способ термической обработки полуфабрикатов из однофазных @ -титановых сплавов 1989
  • Гордиенко Анатолий Илларионович
  • Дымовский Александр Семенович
  • Козина Ирина Юрьевна
  • Михайлов Владимир Иванович
  • Шер Владимир Абрамович
  • Бурочкин Николай Алексеевич
SU1620502A1
Гаситель колебаний давления жидкости 1985
  • Асеев Вячеслав Васильевич
SU1273674A2

RU 2 393 266 C1

Авторы

Кудрявцев Анатолий Сергеевич

Паноцкий Денис Александрович

Даты

2010-06-27Публикация

2008-10-02Подача