СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ КОНСТРУКЦИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2010 года по МПК C22F1/04 B21D1/14 B21D3/16 C21D9/50 

Описание патента на изобретение RU2394934C1

Изобретение относится к термической обработке металлов и сплавов, а именно к термообработке сварных конструкций из алюминиевых сплавов, и может быть использовано в авиакосмической, судостроительной, автомобильной и других областях промышленности.

Известен способ термообработки алюминиевых сплавов, в том числе сварных конструкций (ПИ 1.2.255-83, Производственная инструкция «Термическая обработка полуфабрикатов и деталей из алюминиевых деформируемых сплавов» (ВИАМ, г.Москва, 1983 г.). Известный способ предусматривает отжиг сварных конструкций в печи для снятия напряжений при температуре 250-350°С. Недостатком известного способа является то, что он не предусматривает при этом предотвращение и устранение деформаций.

Известен способ термообработки и правки сварных алюминиевых конструкций для уменьшения внутренних напряжений и деформаций (ПИ 1.4.1555-2000, Производственная инструкция «Сварка дуговая алюминиевых и магниевых сплавов в среде защитных газов» (НИАТ г.Москва, 2000 г.). Известный способ предусматривает устранение различных видов остаточных деформаций способом местной холодной правки и применением местного нагрева. Недостатком известного способа является то, что пониженное значение модуля упругости алюминиевых сплавов, особенно в сечениях со значительной жесткостью, затрудняет или делает невозможным применение местной холодной правки сварных конструкций. Кроме того, холодная правка приводит к появлению наклепа, что отрицательно сказывается на эксплутационных свойствах изделия. Правка местным нагревом не всегда применима, так как связана со значительными трудностями контроля температуры.

Известен способ термообработки сварных конструкций, совмещенный с термофиксацией (А.Г. Братухин и др. Технология производства титановых самолетных конструкций. - М.: Машиностроение, 1995 г.). Недостатком известного способа является то, что он предусматривает термообработку только титановых сплавов.

Наиболее близким, принятым за прототип решением, является способ правки длинномерных деталей из легких сплавов (патент РФ №2165814 от 25.02.2001 г., B21D 1/14). Способ заключается в том, что подвергаемую правке деталь устанавливают на базу устройства. Воздействуют на нее правящими инструментами до восстановления номинальных размеров. Совместно нагревают, выдерживают при температуре 200-300°С в зафиксированном состоянии в течение определенного времени. Снимают деталь с базы после совместного охлаждения. Недостатком известного способа является то, что способ предусматривает правку детали в какой-либо определенной плоскости, параллельной «базе», и неприемлем для правки конструкции, состоящей из деталей, находящихся в пространстве в различных плоскостях.

Наиболее радикальным методом снижения остаточных напряжений в сварных конструкциях является термообработка. Предпочтительной температурой для алюминиевых сплавов является температура 250-350°С, при которой процессы релаксации протекают более активно. За время нагрева в 25-30 минут происходит снижение исходных напряжений почти до нуля. Но при этом происходит и снижение прочности, что приводит к изменению геометрической формы крупногабаритной пространственной конструкции. Таким образом для термообработки крупногабаритной сварной пространственной конструкции необходимо создать условия, при которых конструкция (например, каркас контейнера) при нагреве и выдержке при температуре 250-350°С могла сохранить геометрическую форму, а при охлаждении возвратиться в исходное состояние. Для этого необходимо использовать приспособление из более прочного металла с учетом линейных и объемных расширений как самой термообрабатываемой конструкции, так и приспособления (устройства). Необходимо отметить, что если после сварки могут иметь место незначительные изменения геометрической формы: деформации в виде прогибов, неперпендикулярности, непараллельности, винтообразности и т.п., то в процессе термообработки приспособление позволяет исправить вышеуказанные отклонения формы.

Задачей предлагаемого изобретения является разработка способа термообработки сварной крупногабаритной конструкции, при котором будет возможно изготавливать сложные сварные пространственные конструкции, снимать внутренние напряжения, выправлять деформации и сохранять геометрическую форму изделия.

Технический результат предлагаемого изобретения заключается в сохранении геометрической целостности (формы) и размерной стабильности крупногабаритных сварных конструкций из алюминиевых сплавов после термической обработки.

Поставленная задача достигается тем, что перед термообработкой сварной пространственной конструкции ее закладывают в устройство для фиксации, содержащее корпус, выполненный из стальной трубы, с установленными на концах плитами, одна из которых неподвижна, а вторая имеет возможность перемещения вдоль оси устройства. На плитах установлены клиновые прижимы, в промежутке между плитами расположены ложементы со съемными упорами, между которыми имеется установочный зазор. Сварную конструкцию размещают в устройстве для фиксации, при этом совмещают внутренние поверхности поперечных и продольных элементов сварной конструкции с поверхностями плит и ложементов, закрепляют их клиновыми прижимами к плитам, упорами к ложементам с обеспечением установочного зазора, затем помещают в печь, нагревают до температуры 350°С и выдерживают в течение 0,5 час, охлаждают в печи до температуры 150°С с последующим охлаждением на воздухе.

Устройство для термообработки содержит устройство для фиксации сварной конструкции и печь для нагрева. На фиг.1 представлен эскиз сварной конструкции каркаса контейнера. На фиг.2 - эскиз устройства для термообработки сварной конструкции каркаса контейнера (печь для нагрева на эскизе не показана).

Сварная конструкция каркаса контейнера (фиг.1) состоит из двух параллельных балок 1, соединенных стыковым швом 2 с двумя шпангоутами 3. После сварки в зоне сварных швов 2 возникают напряжения, способствующие деформации балок в виде прогибов, и, как следствие, происходит потеря взаимной параллельности и перпендикулярности сборочных единиц. Дальнейшая сборка контейнера в соответствии с требованиями конструкторской документации невозможна.

Устройство для фиксации 4 сварной алюминиевой конструкции каркаса контейнера (фиг.2) состоит из корпуса 5, выполненного из стальной трубы 6, с установленными на концах плитами 7 и 8, одна из которых - 7 - неподвижная, а другая - 8 - может перемещаться вдоль продольной оси устройства. На плитах установлены клиновые прижимы 9, в промежутке между плитами 7 и 8 имеются ложементы 10 со съемными упорами 11, между которыми установочный зазор 12 для размещения параллельных балок каркаса контейнера.

Предлагаемый способ термообработки сварного алюминиевого каркаса осуществляется следующим образом.

Каркас закладывают в устройство для фиксации 4, совмещая внутренние поверхности каркаса с поверхностями плит 7 и 8 и ложементами 10, закрепляя клиновыми прижимами 9 к плитам 7 и 8, а упорами 11 - к ложементам 10, обеспечивая параллельность и перпендикулярность поперечных и продольных элементов каркаса (балки и шпангоуты) относительно друг друга. Устанавливают зазор 12 между упорами 11 и наружной поверхностью параллельных балок для возможности перемещения балок в устройстве при нагреве, после чего устройство с каркасом помещают в печь и нагревают до температуры 350°С. Выдерживают в течение 0,5 ч. Устройство с каркасом оставляют в печи до снижения температуры до 150°С. При нагреве в печи алюминиевый каркас вместе со стальным устройством удлиняется и расширяется. При этом конструктивные особенности устройства и материал, из которого оно изготовлено, способствуют линейному перемещению и объемному расширению сварного каркаса в рамках заданных параметров. При воздействии температуры 350°С происходит термическая правка деформаций и релаксация внутренних напряжений. При охлаждении в печи до температуры 150°С продолжается процесс релаксации внутренних напряжений и фиксации геометрической формы каркаса, после чего устройство с каркасом вынимают из печи. При охлаждении конструкции на воздухе происходит процесс стабилизации.

Таким образом, пространственная сварная конструкция из алюминиевого сплава при нагреве и охлаждении фиксируется по основным геометрическим параметрам и не меняет своей заданной геометрической целостности. При этом снижаются внутренние напряжения не только в сварных швах, но и в сваренных элементах и, как следствие, в конструкции в целом.

Пример эффективности термической обработки сварной алюминиевой конструкции по предложенному способу реализован при изготовлении подвесных контейнеров изделия Су-30МКИ. Сварной каркас контейнера длиной 4000 мм и диаметром 400 мм из сплава АМг6 термообрабатывается для снятия напряжений в сварных соединениях. Полученный результат обеспечивает геометрическую точность в соответствии с конструкторской документацией.

Похожие патенты RU2394934C1

название год авторы номер документа
Способ формообразования деталей из высокопрочных алюминиевых сплавов 1980
  • Раевская Галина Апсаттаровна
  • Соснин Олег Васильевич
  • Поспелов Иван Прохорович
  • Горев Борис Васильевич
  • Веричев Станислав Николаевич
  • Бишев Борис Александрович
  • Красовский Валерий Викторович
SU933790A1
СПОСОБ ПРАВКИ ДЛИННОМЕРНЫХ ДЕТАЛЕЙ ИЗ ЛЕГКИХ СПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Казаков Ю.В.
  • Климов А.С.
  • Корягин К.Б.
RU2165814C2
Способ изготовления продольно- ОРЕбРЕННыХ СТАНиН 1978
  • Касьян Мартын Ваганович
  • Арутюнян Рафаел Вараздатович
  • Захаров Михаил Федорович
  • Скоблов Леонид Соломонович
SU816605A1
СПОСОБ СВАРКИ РАМЫ МИКРОАВТОМОБИЛЯ КАРТ 2023
  • Ермилин Алексей Игоревич
  • Бочеров Андрей Александрович
  • Чевтайкин Игорь Васильевич
  • Наклескин Андрей Алексеевич
RU2825352C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА 2008
  • Сенаторова Ольга Григорьевна
  • Ткаченко Евгения Анатольевна
  • Сидельников Василий Васильевич
  • Антипов Владислав Валерьевич
  • Блинова Надежда Евгеньевна
  • Шестов Виталий Викторович
  • Красова Екатерина Вячеславовна
  • Гирш Роберт Иосифович
RU2396367C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2009
  • Баженов Павел Владимирович
  • Думнов Владимир Сергеевич
  • Ильенко Евгений Владимирович
  • Маранц Борис Давидович
  • Миронов Валерий Георгиевич
  • Митберг Борис Яковлевич
  • Павлухин Петр Иванович
  • Сухарев Сергей Борисович
RU2395356C1
УСТРОЙСТВО ДЛЯ СБОРКИ УЗЛОВ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 1990
  • Наталич Н.Д.
  • Акопян Г.Х.
  • Колесников С.А.
  • Жданько В.К.
  • Стратьева Э.А.
  • Островерхов М.В.
SU1683280A1
СПОСОБ ПРОИЗВОДСТВА ПРЕССОВАННЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВОГО СПЛАВА СЕРИИ 6000 2013
  • Михайлов Евгений Дмитриевич
  • Иванова Людмила Ивановна
  • Зорихин Денис Валерьевич
RU2542183C2
УСТРОЙСТВО ДЛЯ ТЕРМООБРАБОТКИ В ЗАНЕВОЛЕННОМ СОСТОЯНИИ 1979
  • Спектор Я.И.
  • Коновалов Б.О.
  • Храмов С.И.
  • Авербух И.Г.
  • Смирнов А.М.
  • Лебедев Г.Т.
  • Вакс И.А.
  • Редчиц В.В.
  • Макаровская Г.И.
SU788756A1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ 1998
  • Фридляндер И.Н.(Ru)
  • Колобнев Н.И.(Ru)
  • Хохлатова Л.Б.(Ru)
  • Каблов Е.Н.(Ru)
  • Давыдов В.Г.(Ru)
  • Чертовиков В.М.(Ru)
  • Толченникова Е.Г.(Ru)
  • Галкин Д.С.(Ru)
  • Можаровский С.М.(Ru)
  • Винклер Петер-Юрген
  • Лехельт Эрвин
  • Пфанненмюллер Томас
RU2133295C1

Иллюстрации к изобретению RU 2 394 934 C1

Реферат патента 2010 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ КОНСТРУКЦИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области термической обработки металлов и сплавов, а именно к термообработке сварных конструкций из алюминиевых сплавов. Для снятия внутренних напряжений в сварной конструкции и сохранения ее геометрической формы перед термообработкой сварную конструкцию закладывают в устройство, содержащее корпус в виде стальной трубы, с установленными на концах плитами, одна из которых неподвижна, а вторая имеет возможность перемещения вдоль оси устройства. На плитах установлены клиновые прижимы, в промежутке между плитами расположены ложементы со съемными упорами, между которыми имеется установочный зазор. С помощью винтовых и клиновых прижимов, а также ложементов и плит, выправляют имеющиеся деформации и отклонения от геометрической формы. После фиксации необходимых размеров и формы конструкции, устройство с конструкцией помещают в печь, нагревают до температуры 350°С и выдерживают в течение 0,5 ч, нагревание прекращают и при снижении температуры до 150°С вынимают из печи. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 394 934 C1

1. Устройство для термической обработки сварных конструкций из алюминиевых сплавов, содержащее устройство для фиксации сварной конструкции, состоящее из корпуса, выполненного из стальной трубы, с установленными на концах плитами, одна из которых неподвижна, а вторая имеет возможность перемещения вдоль продольной оси, на плитах установлены клиновые прижимы, в промежутке между плитами расположены ложементы со съемными упорами, между которыми имеется установочный зазор и печь для нагрева сварной конструкции, размещенной в устройстве для фиксации.

2. Способ термической обработки сварных конструкций из алюминиевых сплавов, включающий фиксацию сварной конструкции путем совмещения внутренних поверхностей поперечных и продольных элементов сварной конструкции с поверхностями плит и ложементов, закрепления их клиновыми прижимами к плитам, упорами к ложементам с обеспечением установочного зазора, затем помещают в печь, нагревают до 350°С, выдерживают в течение 0,5 ч охлаждают в печи до 150°С с последующим охлаждением на воздухе.

Документы, цитированные в отчете о поиске Патент 2010 года RU2394934C1

СПОСОБ ПРАВКИ ДЛИННОМЕРНЫХ ДЕТАЛЕЙ ИЗ ЛЕГКИХ СПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Казаков Ю.В.
  • Климов А.С.
  • Корягин К.Б.
RU2165814C2
Способ термической обработкиСВАРиВАЕМыХ АлюМиНиЕВыХ СплАВОВ 1976
  • Мироненко Виктор Николаевич
  • Евстифеев Виктор Сергеевич
  • Барабохин Николай Семенович
  • Шиганов Николай Васильевич
  • Казаков Вячеслав Аркадьевич
  • Власова Тамара Алексеевна
  • Силис Валентина Эгоновна
SU850729A1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ 1998
  • Фридляндер И.Н.(Ru)
  • Колобнев Н.И.(Ru)
  • Хохлатова Л.Б.(Ru)
  • Каблов Е.Н.(Ru)
  • Давыдов В.Г.(Ru)
  • Чертовиков В.М.(Ru)
  • Толченникова Е.Г.(Ru)
  • Галкин Д.С.(Ru)
  • Можаровский С.М.(Ru)
  • Винклер Петер-Юрген
  • Лехельт Эрвин
  • Пфанненмюллер Томас
RU2133295C1
УСТРОЙСТВО ДЛЯ ТЕРМООБРАБОТКИ В ЗАНЕВОЛЕННОМ СОСТОЯНИИ 1979
  • Спектор Я.И.
  • Коновалов Б.О.
  • Храмов С.И.
  • Авербух И.Г.
  • Смирнов А.М.
  • Лебедев Г.Т.
  • Вакс И.А.
  • Редчиц В.В.
  • Макаровская Г.И.
SU788756A1
УСТРОЙСТВО ДЛЯ ТЕРМОФИКСАЦИИ ДЕТАЛЕЙ 0
SU287075A1

RU 2 394 934 C1

Авторы

Астафьев Анатолий Гаврилович

Карасев Игорь Сергеевич

Даты

2010-07-20Публикация

2009-02-10Подача