СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНОГО ГАЗА Российский патент 2010 года по МПК B01D53/14 C07C7/12 

Описание патента на изобретение RU2395329C2

Изобретение относится к подготовке природного и попутного нефтяного газа к транспортировке его на дальние расстояния, а именно к осушке и очистке газа от углеводородов С6+, следов сернистых соединений (СOS, СН2SН и Н2S).

Известен способ адсорбционной очистки природного газа от сернистых соединений и его осушки путем контактирования с цеолитом NaX с последующей регенерацией цеолита путем продувки осушенным и очищенным газом при температуре 330÷350°С. Последнее обусловлено особенностью десорбции молекул воды из пор цеолита [1] (Кельцев Н.В. «Основы адсорбционной техники». - М.: Химия, 1985, с.396.

Недостатком известного способа является его высокая температура регенерации и невозможность очистить природный газ от углеводородов С6+.

Известен также способ осушки и очистки углеводородных газов от меркаптанов и сероводорода путем последовательного контактирования по ходу газа с комбинированным слоем адсорбентов, состоящим из силикагеля и цеолита. Регенерацию комбинированного слоя проводят очищенным газом при температуре 180÷220°С [2] (патент РФ №2213085, МПК 7 С07С 7/12, опубл. 27.09.2003, бюл. №27).

Недостатком этого способа является низкая динамическая емкость комбинированного слоя по углеводородам С6+, низкая степень очистки газа от малых концентраций сернистых соединений (<36 мг/м3) и невозможность очистки газа от COS.

Наиболее близким по технической сущности и достигаемому результату к заявляемому способу осушки и очистки природных газов является способ, включающий контактирование газов с адсорбентом с последующей регенерацией очищенным газом адсорбента противотоком [3] (патент RU 2213085, кл. С07С 7/12, 27.09.2003 г., всего 10 страниц, весь документ).

Недостатком известного способа является накопление на поверхности пор углеродных отложений и серы, в результате чего уменьшается динамическая емкость силикагеля по углеводородам.

Согласно этому способу осушку и очистку газа от углеводородов С6+осуществляют комбинированным слоем силикагеля, который служит защитным слоем от попадания капельной влаги на основной слой, и мелкопористого силикагеля, который является основным слоем. Адсорбция воды и углеводородов происходит на мелкопористом силикагеле. Регенерацию силикагелей осуществляют при температуре 280°С. При попадании на слой основного мелкопористого силикагеля следов меркаптанов и COS (до 40 мг/м3) происходит их адсорбция, накапливание (концентрирование) и разложение при регенерации силикагеля. Это приводит к накоплению на поверхности пор углеродных отложений и серы и уменьшению динамической емкости силикагеля по углеводородам.

Задачей настоящего изобретения является повышение эффективности способа за счет предотвращения углеродных отложений и серы на поверхности силикагеля основного слоя, увеличение срока службы силикагеля.

Сущность настоящего изобретения заключается в том, что в известном способе осушки и очистки природных газов от углеводородов и следов сернистых соединений, таких как меркаптаны, COS и H2S, путем контактирования природных газов с адсорбентом с последующей регенерацией противотоком очищенным газом адсорбента согласно изобретению проводят последовательное контактирование природных газов с адсорбентом и мелкопористым силикагелем, в качестве адсорбента используют оксид алюминия, содержащий 3÷25 мас.% оксидов металлов I-II группы, а именно: Na, К, Pb, Cs, Сu, Ag, Be, Mg, Ca, Sr, Ba, Zn, Cd и их смесей, а регенерацию очищенным газом насыщенных силикагеля и адсорбента проводят при температуре 220-280°С.

Контактирование газа с адсорбентом и силикагелем осуществляют при соотношении объемов адсорбента и силикагеля (1÷15):3 или 1÷15/3 соответственно.

Технический результат от использования специального адсорбента состоит в том, что он очищает газ от соединений серы, и последние не попадают на основной слой силикагеля. Это приводит к увеличению срока службы силикагеля, стабилизации его динамической емкости по углеводородам.

Способ осушки и очистки природных газов осуществляют следующим образом.

Природный газ подают в адсорбер, в который загружен комбинированный слой из специального адсорбента и далее, по ходу газа, слой силикагеля. На специальном адсорбенте происходит хемосорбция следов сернистых соединений (меркаптанов, COS и H2S). В то же время этот адсорбент защищает силикагель от попадания капельной влаги. На силикагеле происходит адсорбция паров воды и углеводородов С6+. При n-адсорберной схеме n-2 адсорбера работают в стадии адсорбции, один в стадии регенерации, другой в стадии охлаждения.

Осушенный и очищенный газ поступает на компримирование или линию товарного газа. Часть осушенного и очищенного газа используют в качестве газа регенерации и охлаждения адсорбентов. Регенерацию проводят потоком очищенного газа противотоком в последовательности силикагель - специальный адсорбент. Очищенный газ сначала используют на стадии охлаждения и далее направляют на стадию регенерации, нагревая его в теплообменнике, а затем в печи до температуры 220÷280°С. После печи газ подают в адсорбер, находящийся на регенерации. Газы регенерации, содержащие воду и углеводороды С6+, подают на агрегат воздушного охлаждения, далее в сепаратор, а после отделения жидкой фазы газы подают на вход в адсорбера вместе с сырьем - неочищенным газом.

Пример 1. На пилотной адсорбционной установке исследовали адсорбционные свойства комбинированного слоя адсорбента, состоящего из специального адсорбента и силикагеля. Соотношение объемов специального адсорбента и силикагеля 1÷15 соответственно. Специальный адсорбент состоял из активного оксида алюминия и содержал 8 мас.% СuО.

В реактор диаметром 50 мм и высотой 3000 мм загружали 4 литра силикагеля марки АССМ и 267 мл специального адсорбента. Реактор снабжен внешним обогревом. Кроме реактора, установка включала узел приготовления исходной газовой смеси, узел компримирования газа, узел отбора газовых проб и их анализа. Исследования проводили в условиях, близких к работе промышленных адсорбционных установок: давление в адсорбере ~5 МПа, температура адсорбции ~30°С, линейная скорость газа ~0,07 м/с, время контакта «газ-комбинированный слой» ~43 с. Состав газа представлен в таблице 1.

Расход газа контролировали газовым счетчиком. Влагосодержание газа (температуру точки росы по влаге) на входе и выходе из адсорбера определяли влагомером «Parametric-280».

Концентрации в газе модельного углеводорода н-гептана и изопропилмеркаптана измеряли хроматографически.

Динамическую адсорбционную емкость комбинированного слоя адсорбента и его свойства оценивали по проскоку н-гептана на выходе из реактора. Проскоком считали величину содержания н-гептана, равную 5% от первоначальной концентрации. Защитные свойства специального адсорбента оценивали по величине динамической емкости комбинированного слоя и слоя силикагеля, не защищенного специальным адсорбентом, в течение 5 циклов.

Состав газа и результаты проведенных исследований адсорбционных свойств комбинированного слоя адсорбента приведены в таблице 1.

Из представленных результатов видно, что сернистые соединения и их отложения на «не защищенном» силикагеле резко снижают адсорбционную динамическую емкость по н-гептану.

Применение данного способа в промышленности позволит увеличить срок службы силикагеля с 2-х до 3-4 лет. Все это повышает эффективность заявляемого способа осушки и очистки углеводородных газов.

Таблица 1. № примера Состав специального адсорбента, % масс Содержание Ме(I), Me(II) Концентрация паров n-C7H16, г/нм3 Концентрация паров i-C3H7SH, мг/ нм3 Динамическая емкость по n-C7H16, мас.% Суммарная динамическая емкость по n-C7H16 и H2O, мас.% № цикла 1. 8 CuO 3,05 100 8,6 9,4 1 8 CuO 3,05 100 8,6 9,4 2 8 CuO 3,05 100 8,7 9,4 3 8 CuO 3,05 100 8,6 9,45 5 2. 25 CaO 3,47 88 8,7 9,45 5 25 CaO 3,47 88 8,7 9,42 1 3. 15 ZnO 3,25 100 8,6 9,38 1 15 ZnO 3,25 100 8,6 9,38 5 4.* 15 ZnO 3,25 100 9,0 9,5 1 15 ZnO 3,25 100 8,8 9,5 2 15 ZnO 3,25 100 8,2 9,3 1 15 ZnO 3,25 100 7,6 9,2 4 15 ZnO 3,25 100 7,2 9,2 5 5. 3 BaO 3,5 85 8,2 9,4 2 6. 25 CdO 3,5 85 8,25 9,2 2 7. 12 SrO 3,5 85 8,3 9,4 2 8. 8 MgO 3,5 85 8,6 9,4 2 9. 18 BeO 3,25 85 8,7 9,3 2 10. 3,5 Ag2O 3,25 85 8,8 9,3 2 11. 4,8 K2O 3,25 85 8,6 9,4 2 12. 10,2 Na2O 3,05 85 8,2 9,0 2 13. 3,8 Cs2O 3,25 85 8,2 9,2 2 14. 3,8 Na2O 4,2 100 8,9 9,5 2 6,2 BaO 15. 3,2 ZnO 3,5 100 8,9 9,6 2 4,8 MgO 16. 3,0 Pb2O 3,5 100 8,2 9,6 2 5,0 CuJ * Эксперимент проводили на силикагеле без защитного слоя специального адсорбента

Похожие патенты RU2395329C2

название год авторы номер документа
СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНЫХ ГАЗОВ 2010
  • Шайхутдинов Александр Зайнетдинович
  • Кручинин Михаил Михайлович
  • Мамаев Анатолий Владимирович
  • Золотовский Борис Петрович
  • Артемова Ирина Игоревна
  • Кондауров Станислав Юрьевич
  • Баканов Юрий Иванович
  • Павленко Павел Павлович
  • Кобелева Надежда Ивановна
RU2447929C1
Способ глубокой осушки и очистки от сернистых соединений и утилизации газа регенерации природного и попутного нефтяного газа 2022
  • Кондауров Станислав Юрьевич
  • Кочергин Андрей Вячеславович
  • Перфильева Ксения Григорьевна
  • Пикалов Илья Сергеевич
  • Рамазанов Рустам Джамиевич
  • Рябухин Николай Дмитриевич
RU2805060C1
СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНЫХ ГАЗОВ 2016
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Шатохин Александр Анатольевич
  • Кобелева Надежда Ивановна
  • Гераськин Вадим Георгиевич
  • Малахова Ольга Валентиновна
  • Завалинская Илона Сергеевна
RU2652192C2
СПОСОБ ОСУШКИ И ОЧИСТКИ УГЛЕВОДОРОДНЫХ ГАЗОВ ОТ МЕРКАПТАНОВ И СЕРОВОДОРОДА 2002
  • Николаев В.В.
  • Трынов А.М.
  • Слющенко С.А.
  • Савин Ю.М.
  • Молчанов С.А.
  • Шахов А.Д.
  • Коренев К.Д.
  • Кисленко Н.Н.
  • Золотовский Б.П.
RU2213085C2
Способ переработки природного углеводородного газа 2015
  • Мнушкин Игорь Анатольевич
RU2613914C9
СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНЫХ ГАЗОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Курочкин Андрей Владиславович
RU2497573C1
СПОСОБ АДСОРБЦИОННОЙ ОСУШКИ И ОЧИСТКИ ПРИРОДНОГО ГАЗА 2019
  • Медведев Дмитрий Александрович
  • Рубанов Антон Евгеньевич
  • Зотов Руслан Анатольевич
  • Сусликова Наталья Михайловна
  • Середёнок Виктор Аркадьевич
  • Кручинин Михаил Михайлович
RU2705065C1
Способ и установка адсорбционной осушки и очистки природного газа 2019
  • Мнушкин Игорь Анатольевич
RU2717052C1
Способ очистки природного газа от примесей 2018
  • Мнушкин Игорь Анатольевич
RU2691341C1
СПОСОБ ОЧИСТКИ ПРИРОДНОГО ГАЗА ОТ ПРИМЕСЕЙ ПРИ ЕГО ПОДГОТОВКЕ К ПОЛУЧЕНИЮ СЖИЖЕННОГО МЕТАНА, ЭТАНА И ШИРОКОЙ ФРАКЦИИ УГЛЕВОДОРОДОВ 2015
  • Мнушкин Игорь Анатольевич
RU2602908C9

Реферат патента 2010 года СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНОГО ГАЗА

Изобретение может быть использовано для подготовки природного и попутного нефтяного газа к транспортировке на дальние расстояния. Природный газ подают в адсорбер, в который загружен комбинированный слой адсорбента и далее, по ходу газа, слой силикагеля. На адсорбенте происходит хемосорбция следов сернистых соединений, таких как меркаптаны, COS и H2S. На силикагеле происходит адсорбция паров воды и углеводородов С6+. В качестве адсорбента используют оксид алюминия, содержащий 3÷25 мас.% оксидов металлов I-II группы, а именно: Na, К, Рb, Cs, Сu, Ag, Be, Mg, Ca, Sr, Ba, Zn, Cd и их смесей. Регенерацию очищенным газом насыщенных силикагеля и адсорбента проводят при температуре 220-280°С. Изобретение позволяет повысить эффективность осушки и очистки природного газа за счет предотвращения углеродных отложений и серы на поверхности силикагеля основного слоя и увеличить срок службы силикагеля. 1 табл.

Формула изобретения RU 2 395 329 C2

Способ осушки и очистки природных газов от углеводородов С6+ и следов сернистых соединений, таких, как меркаптаны, COS и H2S, путем контактирования природных газов с адсорбентом с последующей регенерацией противотоком очищенным газом адсорбента, отличающийся тем, что проводят последовательное контактирование природных газов с адсорбентом и мелкопористым силикагелем, в качестве адсорбента используют оксид алюминия, содержащий 3÷25 мас.% оксидов металлов I-II группы, а именно: Na, K, Pb, Cs, Сu, Ag, Be, Mg, Ca, Sr, Ba, Zn, Cd и их смесей, а регенерацию очищенным газом насыщенных силикагеля и адсорбента проводят при температуре 220-280°С.

Документы, цитированные в отчете о поиске Патент 2010 года RU2395329C2

СПОСОБ ОСУШКИ И ОЧИСТКИ УГЛЕВОДОРОДНЫХ ГАЗОВ ОТ МЕРКАПТАНОВ И СЕРОВОДОРОДА 2002
  • Николаев В.В.
  • Трынов А.М.
  • Слющенко С.А.
  • Савин Ю.М.
  • Молчанов С.А.
  • Шахов А.Д.
  • Коренев К.Д.
  • Кисленко Н.Н.
  • Золотовский Б.П.
RU2213085C2
Способ очистки газа от соединений серы 1983
  • Виллем Йохан Якоб Ван Дер Вал
  • Йон Вильхельм Гес
SU1531842A3
Способ регенерации адсорбента 1984
  • Блазнин Юрий Петрович
  • Воротынцев Валерий Борисович
  • Валеев Нух Файзрахманович
  • Петухов Сергей Сергеевич
  • Голубев Владимир Михайлович
SU1278006A1
СПОСОБ РАЗДЕЛЕНИЯ ПРОДУКТОВ ДЕГИДРОЦИКЛОДИМЕРИЗАЦИИ ПРОПАНА И БУТАНА 2004
  • Фалькевич Генрих Семёнович
  • Ростанин Николай Николаевич
  • Иняева Галина Викторовна
  • Барильчук Михаил Васильевич
  • Виленский Леонид Михайлович
  • Ростанина Елена Дмитриевна
  • Трифонов Сергей Владимирович
  • Белов Владимир Петрович
RU2277527C1
GB 995548 А, 16.06.1965.

RU 2 395 329 C2

Авторы

Золотовский Борис Петрович

Жвачкин Сергей Анатольевич

Баканов Юрий Иванович

Митяй Сергей Сергеевич

Павленко Павел Павлович

Даты

2010-07-27Публикация

2007-11-19Подача