СПОСОБ ПОЛУЧЕНИЯ ДОРОЖНОГО БИТУМА Российский патент 2010 года по МПК C10C3/04 

Описание патента на изобретение RU2402589C2

Изобретение относится к способам получения дорожных битумов из продуктов термического ожижения бурого угля и нефтяных остатков и может быть использовано в нефтехимической, угольной и дорожной промышленности.

Известен способ получения дорожного битума из сланца (А.С. №1268599) в присутствии добавки - кубового остатка производства фенолов кумольным методом. В качестве растворителя используют фракции:

а) полученную в процессе обработки сланца и выкипающую в пределах 200-320°С в соотношении 1:0,3-0,7;

б) полученную также при обработке сланца и выкипающую при 200-320°С в соотношении 1:0,2-0,8.

Недостаток данного способа заключается в том, что высококипящий зольный экстракт отнесен к битумам, но не указаны основные показатели, характеризующие его как битум.

Известен способ получения битума (А.С. №1260384) путем окисления углеводородного сырья кислородом воздуха, где в качестве углеводородного сырья используют полугудрон или их смесь с каменноугольным дегтем, а также добавляют сернокислотный окислитель, в качестве которого применяют кислый гудрон производства сульфонатных присадок, кислый гудрон очистки масляных дистиллятов или отработанная серная кислота сернокислотного алкилирования.

Недостатком данной технологии производства битума является применение кислых компонентов, в частности отработанной серной кислоты сернокислотного алкилирования, которая очень быстро будет разрушать органические производные битума, такие как смолы, асфальтены и парафино-нафтены, являющиеся основными составляющими битумов. Поэтому такие битумы быстро разрушаются и качество дорожного покрытия на их основе будет низким.

Известен также способ получения дорожного битума на основе продуктов крекинга лигнина и каменноугольного дегтя, которые используются в соотношении 1:1 (А.С. №355867).

Недостаток этой технологии в том, что необходимо проводить крекинг лигнина, отделение от полученного продукта серии нежелательных компонентов. Далее следует проводить полукоксование или коксование каменного угля с целью получения каменноугольного дегтя.

Получаемый при этом битум оценен только по трем параметрам. Побочные продукты процессов крекинга лигнина и каменного угля, которые получаются в достаточно большом количестве, необходимо утилизировать, что, безусловно, отражается на внедрении данной технологии.

Известен также способ получения битума путем окисления нефтяных остатков, в частности гудрона, в присутствии катализатора, содержащего твердые хлориды - отходы титаномагниевого производства, мартеновский шлак и/или алюминиевый шлак (А.С. №2098178, 1995).

Недостаток способа заключается в необходимости наличия указанных отходов металлургических производств, состав которых непостоянный, что будет влиять на качество получаемого битума.

Наиболее близким к изобретению является способ получения битума окислением нефтяных остатков в присутствии катализатора, в качестве которого используют сланец и/или уголь, или смесь цеолита и сланца, или смесь цеолита и угля в виде пыли в количестве 5-60 мас.% от исходного сырья (патент RU №2221003). Используют как природные цеолиты, так и искусственные. В качестве цеолита используют также отработанные цеолитсодержащие катализаторы нефтеперерабатывающих процессов.

Недостаток способа заключается в том, что каталитические свойства угля, сланца и использованных цеолитов в любой их модификации очень незначительны и, кроме того, не являются селективными, т.к. не позволяют извлечь из угля недостающих компонентов битума, таких как асфальтенов и фенолов. Фенолы обладают биоцидными свойствами, предохраняя его от воздействия микроорганизмов, что в целом повышает долговечность битумных материалов (Патент RU №2208024). Роль угля в прототипе ограничивается только тонкодисперсным наполнителем. Отработанные цеолитсодержащие катализаторы могут внести нежелательные компоненты в битум, что сделает его опасным для экологии.

Для устранения указанных недостатков предлагается способ получения битума путем каталитического окисления кубового остатка термического растворения угля, полученного после отгонки светлых продуктов до температуры 350°С.

Для термического растворения угля использовали растворитель - нефтепродукт, в качестве которого применяли мазут или нефтяной остаток с температурой кипения выше 300°С или их смесь. Терморастворение проводили в присутствии катализатора, представляющего собой оксид железа, промотированный оксидами металлов переменной валентности при соотношении уголь : нефтяной остаток : катализатор 1:3:0,01 при температуре 300-350°С, давлении 2-5 атм, времени выдержки 30 минут. Окисление кубового остатка проводили в присутствии вышеуказанного катализатора при температуре 160°С в течение 2,5-3 часов при атмосферном давлении.

Способ проводят следующим образом.

В мазут или нефтяной остаток с температурой кипения выше 350°С или их смесь добавляют тонкодисперсную угольную пыль ≤0,1 м и катализатор, представляющий собой оксид железа, промотированный оксидами металлов переменной валентности.

Полученную пасту помещают в автоклав и нагревают при температуре 300-350°С и давлении до 5 атм, в течение 30 минут, для извлечения необходимых компонентов из угля, в частности фенольных соединений и асфальтенов.

Далее из полученного продукта отгоняют светлые фракции. Полученный высококипящий остаток подают в диспергатор и подвергают окислению при температуре до 200°С при атмосферном давлении.

Способ иллюстрируется следующими примерами.

Пример 1

В качестве растворителей использовали мазут-100, со следующей характеристикой:

Наименование показателя Норма 1 Вязкость при 80°С, не более 96,5 2 Вязкость при 100°С, не более 46,6 3 Зольность, % не более 0,14 4 Массовая доля механических примесей, % не более 1,0 5 Массовая доля воды, % не более 1,0 6 Содержание водорастворимых кислот и щелочей Отсутствие 7 Массовая доля серы, % не более 1,0 8 Температура вспышки в открытом тигле, °С, не ниже 110 9 Плотность при 20°С, кг/м3 Не нормируется 10 Температура застывания, °С, не выше 25

Уголь - бурый, со следующей характеристикой: Ad - 4,6; Vdaf - 15,8; Cdaf - 72,1; Hdaf - 5,9; (S+O+N)daf - 25,3.

Уголь предварительно измельчают до фракции 0,1 мм, перемешивают с мазутом в соотношении 1:3, в полученную пасту добавляют катализатор в количестве 0,01 г на кг пасты, которую затем помещают в автоклав и выдерживают при температуре 300-350°С в течение 30 минут. Катализатор вводится в систему на стадии диспергирования угля. Из полученной смеси отгоняют светлые фракции до 350°С. Оставшийся высококипящий остаток с катализатором помещают в диспергатор, через который пропускают воздух и окисляют в течение 2,5-3 часов при температуре 160°С. В результате получают битум марки БНД 40/60.

Пример 2

Приготовление пасты проводят по примеру 1. В качестве растворителя используют фракцию, выкипающую в пределах 200-350°С, со следующей характеристикой:

- плотность при 20°С, кг/м3 - 860.

Групповой состав, мас.%:

- асфальтены - 3,4;

- масла - 78,0;

- смолы - 21,6.

Опыт по получению битума проводят по примеру 1. В результате получают битум марки БНД 60/90.

Пример 3

Приготовление пасты проводят по примеру 1. В качестве растворителя используют фракцию, выкипающую в пределах 200-350°С, и мазут в соотношении 1:1. Опыт по получению битума проводят по примеру 1. В результате получили битум марки БНД 90/130.

Результаты экспериментов представлены в таблицах.

На начальном этапе работ было установлено оптимальное соотношение уголь-растворитель в опытах по термическому растворению угля. Данные представлены в таблице №1.

Таблица 1 Влияние соотношения уголь : растворитель на групповой состав высококипящего остатка № п/п Соотношение уголь : растворитель Групповой состав высококипящего остатка, мас.% асфальтены смолы масла карбены, карбоиды 1 1:1 15 22 61 2 2 1:2 12 20 66 2 3 1:3 10 12 75 3 4 1:4 8 10 80 2 5 1:5 5 9 83 3

Как следует из проведенных исследований, при увеличении количества растворителя происходит уменьшение асфальтенов и смол с одновременным увеличением масел. Оптимальным значением принято соотношение 1:3, т.к. это наиболее близкая величина к производным битумным продуктам: асфальтенов - 10,2%; смол - 19,4% и масел 70,4%.

Таблица 2 Результаты термического растворения угля с различными растворителями (температура - 300°С, давление - 5 атм, соотношение уголь : растворитель - 1:3) № п/п Растворитель Фракционный состав, мас.% Групповой состав продукта после автоклава, мас.% До 200°С До 350°С асфальтены масла смолы 1 Мазут* 10,2 18,9 6,1 74,0 19,9 2 Фр. 200-350°С** 8,2 22,6 4,8 72,0 23,2 3 Мазут+фр. 200-350°С (1:1)*** 10,6 35,8 7,7 62,4 29,9 * - растворимость угля - 26%; ** - растворимость угля - 21,7%; *** - растворимость угля - 28%.

Из результатов таблицы следует, что при использовании в качестве растворителей мазута высококипящей фракции и смеси мазута и высококипящей фракции 1:1 полученный групповой состав продукта близкий к битумным составам.

В следующей таблице представлены результаты, которые получены после вакуумной разгонки и последующего получения битума по методике, описанной в примере 1.

Таблица 3 Результаты группового анализа продуктов термического растворения угля № п/п Групповой состав высококипящего остатка*, мас.% Групповой состав битума, мас.% КиШ асфальтены масла смолы асфальтены масла смолы 1 8,2 64,0 27,8 16,3 56,2 27,5 79 2 7,8 68,6 23,6 8,5 60,3 31,2 51 3 8,7 47,6 43,7 18,3 42,2 39,5 46 *Групповой состав после вакуумной отгонки продукта терморастворения.

Как следует из данных, приведенных в таблице 3, после окисления высококипящего остатка, полученного в результате вакуумной разгонки до 350°С продукта терморастворения угля, образуется остаток, соответствующий по групповому составу и температуре размягчения по КиШ битумам.

Физико-химические характеристики полученных битумов приведены в таблице 4.

Таблица 4 Физико-химические характеристики полученного битума Наименование показателя Норма по ГОСТ БНД 40/60/ пример 1 Норма по ГОСТ БНД 60/90/ пример 2 Норма по ГОСТ БНД 90/130/ пример 3 1. Глубина проникновения иглы, 0,1 мм, при:
- 25°С
40-60/54 61-90/72 91-130/94
- 0°С 13/15 20/22 28/30 2. Температура размягчения по кольцу и шару, °С, не ниже 51/54 47/53 43/47 3. Растяжимость, см, при: - 25°С 45/53 55/58 65/66 - 0°С - 3,5/3,6 4,0/4,2 4. Температура хрупкости, °С, не выше -12/-10 -15/-12 -17/-17 5. Температура вспышки, °С, не ниже 230/250 230/260 230/250 6. Изменение температуры размягчения после прогрева, °С 5/4,6 5/4,7 5/4,2

Приведенные в таблице 4 физико-химические величины битумов, полученные по примерам 1-3, соответствуют требованиям ГОСТа 22245-90.

Похожие патенты RU2402589C2

название год авторы номер документа
СПОСОБ КОМПЛЕКСНОЙ ТЕРМОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ И ГУМИТОВ 2004
  • Сыроежко Александр Михайлович
  • Проскуряков Владимир Александрович
  • Боровиков Геннадий Иванович
  • Маташкин Вадим Георгиевич
  • Петухова Оксана Николаевна
RU2285716C2
СПОСОБ ПЕРЕРАБОТКИ МАЗУТА 2018
  • Кочетков Алексей Юрьевич
  • Кочеткова Дарья Алексеевна
  • Кочеткова Раиса Прохоровна
  • Кочеткова Елена Юрьевна
RU2698833C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2006
  • Кочеткова Дарья Алексеевна
  • Кочетков Алексей Юрьевич
  • Кочеткова Раиса Прохоровна
RU2335527C2
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ 2005
  • Сыроежко Александр Михайлович
  • Проскуряков Владимир Александрович
  • Боровиков Геннадий Иванович
  • Маташкин Вадим Геогриевич
  • Петухова Оксана Николаевна
RU2288940C1
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО БИТУМА 2007
  • Васильев Валентин Всеволодович
  • Никитин Евгений Ефимович
  • Садчиков Иван Александрович
  • Сомов Вадим Евсеевич
  • Залищевский Григорий Давыдович
  • Бруснин Андрей Геннадьевич
  • Пиденко Алексей Николаевич
RU2359989C1
СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ 2016
  • Кочетков Алексей Юрьевич
  • Кочеткова Раиса Прохоровна
  • Кочеткова Дарья Алексеевна
  • Кочеткова Елена Юрьевна
RU2655382C2
СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩЕГО 2008
  • Нефедов Борис Константинович
  • Горлов Евгений Григорьевич
  • Горлова Евгения Евгеньевна
  • Андриенко Владимир Георгиевич
  • Ольгин Артем Александрович
RU2415172C2
Способ получения компаундированного дорожного битума 2019
  • Тюкилина Полина Михайловна
  • Егоров Александр Геннадьевич
  • Паршукова Ольга Расимовна
  • Шейкина Наталья Александровна
  • Тыщенко Владимир Александрович
RU2729248C1
СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩЕГО 2008
  • Нефедов Борис Константинович
  • Горлов Евгений Григорьевич
  • Горлова Евгения Евгеньевна
  • Олесик Федор Николаевич
  • Андриенко Владимир Георгиевич
  • Ольгин Артем Александрович
RU2415173C2
УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2006
  • Кочеткова Дарья Алексеевна
  • Кочетков Алексей Юрьевич
  • Кочеткова Раиса Прохоровна
RU2321614C1

Реферат патента 2010 года СПОСОБ ПОЛУЧЕНИЯ ДОРОЖНОГО БИТУМА

Изобретение относится к способам получения дорожных битумов из продуктов термического ожижения бурого угля и нефтяных остатков и может быть использовано в нефтехимической, угольной и дорожной промышленности. Изобретение касается способа получения битума окислением кислородом воздуха смеси углеродсодержащего сырья в присутствии катализатора, при этом в качестве смеси углеродсодержащего сырья используют бурый уголь и растворитель - нефтепродукт, которую подвергают предварительно терморастворению в присутствии катализатора, представляющего собой оксид железа, промотированный оксидами металлов переменной валентности при соотношении уголь : нефтяной остаток : катализатор 1:3:0,01 соответственно, температуре 300-350°С, давлении 2-5 атм, времени выдержки 30 минут с последующим отделением легких фракций до 350°С, и окислением высокотемпературного кубового остатка с вышеуказанным катализатором при температуре 160°С в течение 2,5-3 часов с получением битума. Технический результат - расширение сырьевой базы получения дорожного битума с улучшенными биоцидными свойствами. 1 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 402 589 C2

1. Способ получения битума окислением кислородом воздуха смеси углеродсодержащего сырья в присутствии катализатора, отличающийся тем, что в качестве смеси углеродсодержащего сырья используют бурый уголь и растворитель - нефтепродукт, которую подвергают предварительно терморастворению в присутствии катализатора, представляющего собой оксид железа, промотированный оксидами металлов переменной валентности при соотношении уголь: нефтяной остаток: катализатор 1:3:0,01 соответственно, температуре 300-350°С, давлении 2-5 атм, времени выдержки 30 мин с последующим отделением легких фракций до 350°С, и окислением высокотемпературного кубового остатка с вышеуказанным катализатором при температуре 160°С в течение 2,5-3 ч с получением битума.

2. Способ по п.1, отличающийся тем, что в качестве нефтепродукта используют мазут, или нефтяной остаток с температурой кипения выше 300°С, или их смесь.

Документы, цитированные в отчете о поиске Патент 2010 года RU2402589C2

СПОСОБ ПОЛУЧЕНИЯ БИТУМА 2002
  • Горлов Е.Г.
  • Мудунов А.Г.
  • Руденский А.В.
RU2221003C1
Способ получения сланцевого битума 1986
  • Воль-Эпштейн Александр Борисович
  • Липович Владимир Григорьевич
  • Шпильберг Марк Борисович
  • Земсков Владимир Викторович
  • Сергеева Ольга Николаевна
  • Жилин Вячеслав Гаврилович
  • Шпильрайн Эвальд Эмильевич
  • Руденский Андрей Владимирович
SU1402604A1
Способ получения сланцевого битума 1986
  • Воль-Эпштейн Александр Борисович
  • Липович Владимир Григорьевич
  • Шпильберг Марк Борисович
  • Земсков Владимир Викторович
  • Сергеева Ольга Николаевна
  • Жилин Вячеслав Гаврилович
  • Шпильрайн Эвальд Эмильевич
  • Руденский Андрей Владимирович
SU1402605A1
Асфальтобетонная смесь 1982
  • Руденский Андрей Владимирович
  • Руденская Ирина Михайловна
  • Пошехонова Тамара Андреевна
  • Воль-Эпштейн Александр Борисович
  • Шпильберг Марк Борисович
SU1058985A1

RU 2 402 589 C2

Авторы

Шиверская Ида Павловна

Кочеткова Дарья Алексеевна

Битуев Александр Васильевич

Кочеткова Раиса Прохоровна

Кочетков Алексей Юрьевич

Даты

2010-10-27Публикация

2009-01-11Подача