УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ЛИТЫХ МЕТАЛЛИЧЕСКИХ ЗАГОТОВОК Российский патент 2010 года по МПК B22D9/00 

Описание патента на изобретение RU2403120C2

Изобретение относится к металлургии, в частности к технике производства из расплавов жаропрочных, тугоплавких и высокореакционных металлов и сплавов литых металлических заготовок с заданными геометрическими размерами и весом.

Известна установка для получения заготовок в вакууме, содержащая рабочую камеру, в которой установлены устройство для загрузки шихты, тигель, источники нагрева и гранулятор (Патент РФ №2185932, 2002 г.).

Известна установка для получения металлических заготовок в среде инертных газов, содержащая рабочую камеру, в которой размещены устройство для загрузки шихты, медный тигель, источники нагрева и кристаллизатор (Патент США №7137436, 2006 г.) - прототип.

Общим недостатком известных установок является возможность попадания в зону кристаллизации литых заготовок в кристаллизаторе легких неметаллических включений, находящихся на поверхности расплава жидкого металла в тигле и поступающих в кристаллизатор, где возникает захват неметаллических включений во время кристаллизации литой заготовки.

Задачей, на решение которой направлено настоящее изобретение, является получение высококачественных литых металлических заготовок без неметаллических включений с максимально возможным выходом годного и ликвидации потерь в виде стружки, снимаемой из-за удаления дефектов на поверхности литой металлической заготовки.

Техническим результатом, достигаемым при осуществлении изобретения, является исключение попадания неметаллических включений, присутствующих на поверхности расплава, в литую металлическую заготовку во время кристаллизации ее в кристаллизаторе, а также повышение выхода годного за счет устранения операции обточки поверхности заготовки.

Указанный технический результат достигается тем, что в установке для получения литых металлических заготовок в вакууме или среде инертных газов, содержащей изолированную от внешней среды рабочую камеру, в которой размещены устройство для загрузки шихты, независимые источники нагрева, тигель со сливным носком и кристаллизатор, согласно изобретению тигель выполнен неподвижным и разделенным на зоны расплавления и рафинирования, при этом источником нагрева в зоне рафинирования расплава является электродуговой генератор низкотемпературной термической плазмы, формирующий факел, пульсирующий с частотой 0,1-10 Гц. Установка снабжена электромагнитным клапаном, осуществляющим изменение расхода плазмообразующего газа. Электрод электродугового генератора выполнен полым с винтовой проточкой переменного шага на его наружной поверхности для создания переменного магнитного поля, воздействующего на факел.

Изобретение поясняется чертежом.

На чертеже изображен общий вид установки. Установка состоит из рабочей камеры 1 с вращающимся барабаном-питателем 2, помещаемым в устройство загрузки шихты 3, источников нагрева 4, 5, 6 с плазменным факелом 7, тигля 8, разделенного перегородками на две части: зону 9 для расплавления шихты и зону 10 для рафинирования расплава металла, кристаллизатора 11.

Установка работает следующим образом.

Шихту требуемого сплава помещают во вращающийся барабан-питатель 2, который помещается в устройство загрузки шихты 3 рабочей камеры 1. Установка герметизируется и вакуумируется. В зоне расплавления металла 9 зажигаются источники нагрева 4. Затем по очереди зажигаются источники нагрева 5, расположенные в зоне рафинирования 10, и источник нагрева 6, расположенный в зоне кристаллизатора 11. В зоне рафинирования расплава 10 металла осуществляется очистка расплава от неметаллических включений. Очищенный жидкий расплав поступает в кристаллизатор 11, где происходит кристаллизация и охлаждение полученной литой заготовки.

С целью усиления процесса рафинирования расплава воздействием факела электродугового генератора низкотемпературной термической плазмы установка дополнительно создает колебания поверхности жидкого расплава. Пульсация факела посредством вибрации воздействует на расплав жидкого металла, создавая концентрические волны на поверхности расплава и, тем самым, вытесняя неметаллические включения из центральной зоны ванны жидкого металла на стенки рафинировочной емкости. Электродуговой генератор низкотемпературной термической плазмы формирует факел, пульсирующий с частотой 0,1÷10 Гц. Интервал значений частоты пульсации факела обусловлен условиями оптимальной очистки расплава от неметаллических включений. При частоте пульсации факела менее 0,1 Гц не обеспечивается достаточная степень очистки расплава от неметаллических включений, частота пульсации факела свыше 10 Гц не увеличивает эффективность рафинирования.

Пульсация факела электродугового генератора осуществляется периодическим изменением расхода плазмообразующего газа, посредством воздействия на факел генератора переменного магнитного поля, а также питанием генератора пульсирующим током дуги.

Изменение расхода плазмообразующего газа осуществляется за счет включения и отключения электромагнитного клапана. При изменении расхода плазмообразующего газа колебания факела образуются за счет изменения давления на выходе плазмотрона. Разность давлений на выходе плазмотрона, воздействуя на ванну жидкого металла, создает вибрацию на поверхности ванны.

Пульсацию факела электродугового генератора низкотемпературной термической плазмы возможно осуществлять посредством изменения величины тока электродугового генератора, т.е. воздействием пульсирующего тока дуги. Воздействие пульсирующим током дуги осуществляется в интервале 1,2÷1,4 от номинального значения тока. Интервал значения пульсирующего тока дуги определен исходя из требующейся продолжительности работы полого электрода плазмотрона.

Пульсация факела воздействием переменного магнитного поля осуществляется за счет выполнения винтовой проточки с переменным шагом на наружной поверхности полого глухого электрода электродугового генератора. Винтовая проточка с переменным шагом образует катушку для создания вертикального магнитного поля, которое формирует давление на поверхность расплава жидкого металла.

Промышленная применимость настоящего изобретения подтверждается примером конкретного выполнения.

Металлическую стружку (сплав Инконель 718) в количестве 3000 кг загружали в барабан - питатель, помещали в устройство загрузки шихты рабочей камеры. Установку герметизировали и вакуумировали до величины остаточного давления 6,67 Па. После чего установку заполняли гелием до величины избыточного давления 117,7 кПа, зажигали источник нагрева в зоне расплавления шихты, затем последовательно зажигали остальные источники нагрева, производили расплавление шихты и рафинирование расплава. В зоне рафинирования производили очистку расплава от неметаллических включений при помощи рафинирующего флюса на основе CaF2, а дополнительное рафинирование осуществляли электродуговым генератором низкотемпературной плазмы, формировавшим пульсацию факела плазмообразующего газа частотой 1 Гц, посредством изменения тока дуги факела в интервале 2,5÷2,8 кА при номинальном значении тока 2,0 кА. Очищенный жидкий расплав поступал в кристаллизатор с вытяжным подом диаметром 705 мм. Плавку производили в течение 6 часов, после чего литая металлическая заготовка охлаждалась при постоянной циркуляции гелия в течение 5 часов и выгружалась из камеры вытяжки кристаллизатора. Полученная литая заготовка после проведения исследований характеризовалась высоким качеством и отсутствием неметаллических включений.

Предлагаемая установка для получения литых металлических заготовок позволяет исключить попадание в литую металлическую заготовку неметаллических включений, а также до 5% повысить выход годного за счет устранения операции обточки поверхности заготовки.

Похожие патенты RU2403120C2

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПЛАВКИ 2010
  • Пузаков Игорь Юрьевич
  • Ложкин Алексей Александрович
  • Дробинин Роман Владимирович
  • Гончаров Анатолий Егорович
  • Сандырев Евгений Олегович
  • Безматерных Андрей Николаевич
RU2436853C2
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ГРАНУЛ ЖАРОПРОЧНЫХ И ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И СПЛАВОВ, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ИСХОДНОЙ РАСХОДУЕМОЙ ЗАГОТОВКИ ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2008
  • Агеев Сергей Викторович
  • Москвичев Юрий Петрович
RU2413595C2
СПОСОБ КОНТРОЛЯ ЧИСТОТЫ МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ 2009
  • Пузаков Игорь Юрьевич
  • Ложкин Алексей Александрович
  • Дробинин Роман Владимирович
  • Гончаров Анатолий Егорович
  • Сандырев Евгений Олегович
  • Безматерных Андрей Николаевич
RU2425361C1
СПОСОБ ВОЛКОВА ДЛЯ ПРОИЗВОДСТВА ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И ИСПОЛЬЗОВАНИЕ ВЕРТИКАЛЬНО-СТАЦИОНАРНОГО ПЛАЗМАТРОНА - "ВСП" 2008
  • Волков Анатолий Евгеньевич
RU2401477C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА МЕТАЛЛИЧЕСКОГО СЛИТКА 2020
  • Константинов Виктор Вениаминович
  • Константинов Андрей Викторович
  • Чупятов Николай Николаевич
  • Дьяков Валерий Вячеславович
  • Морозов Юрий Викторович
  • Комаров Максим Александрович
RU2753847C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЛАЗМОТЕРМИЧЕСКОГО ЦЕНТРОБЕЖНОГО ВОССТАНОВЛЕНИЯ И РАЗДЕЛЕНИЯ ХИМИЧЕСКИХ ВЕЩЕСТВ ИЗ РУДЫ В ГРАВИТАЦИОННОМ ПОЛЕ 2020
  • Волков Александр Анатольевич
RU2758609C1
СПОСОБ ЭЛЕКТРОПЛАВКИ В ДУГОВОЙ ПЕЧИ ПОСТОЯННОГО ТОКА 2005
  • Ячиков Игорь Михайлович
  • Морозов Александр Прокопьевич
  • Портнова Ирина Васильевна
RU2293268C1
СПОСОБ ПЛАВКИ И ЛИТЬЯ МЕТАЛЛА ВО ВРАЩАЮЩЕЙСЯ И НАКЛОННОЙ ЕМКОСТИ 2000
  • Волков А.Е.
RU2191211C2
Способ производства подшипниковой стали 1982
  • Ефименко Сергей Петрович
  • Житник Георгий Гаврилович
  • Пилюшенко Виталий Лаврентьевич
  • Легостаев Геннадий Семенович
  • Крикунов Борис Петрович
  • Бондаренко Анатолий Герасимович
  • Комельков Виктор Константинович
  • Мазуров Евгений Федорович
  • Шахнович Валерий Витальевич
  • Каблуковский Анатолий Федорович
  • Листопад Владимир Иванович
SU1057553A1
УСТРОЙСТВО ДЛЯ ПЛАВЛЕНИЯ И ЛИТЬЯ МЕТАЛЛОВ И СПЛАВОВ 1992
  • Иванов А.В.
RU2089633C1

Иллюстрации к изобретению RU 2 403 120 C2

Реферат патента 2010 года УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ЛИТЫХ МЕТАЛЛИЧЕСКИХ ЗАГОТОВОК

Изобретение относится к области металлургического производства. Установка содержит изолированную от внешней среды рабочую камеру, в которой размещены устройство для загрузки шихты, независимые источники нагрева, неподвижный тигель со сливным носком, разделенный на зоны расплавления и рафинирования, а также кристаллизатор. Источником нагрева в зоне рафинирования расплава является электродуговой генератор низкотемпературной термической плазмы, формирующий пульсирующий факел с частотой колебания 0,1-10 Гц. Обеспечивается повышение качества заготовок за счет предотвращения попадания неметаллических включений в литую заготовку. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 403 120 C2

1. Установка для получения литых металлических заготовок в вакууме или среде инертных газов, содержащая изолированную от внешней среды рабочую камеру, в которой размещены устройство для загрузки шихты, независимые источники нагрева, тигель со сливным носком и кристаллизатор, отличающаяся тем, что тигель выполнен неподвижным и разделенным на зоны расплавления и рафинирования, при этом источником нагрева в зоне рафинирования расплава является электродуговой генератор низкотемпературной термической плазмы, формирующий факел, пульсирующий с частотой 0,1-10 Гц.

2. Установка по п.1, отличающаяся тем, что она снабжена электромагнитным клапаном, осуществляющим изменение расхода плазмообразующего газа.

3. Установка по п.1, отличающаяся тем, электрод электродугового генератора выполнен полым с винтовой проточкой переменного шага на его наружной поверхности для создания переменного магнитного поля, воздействующего на факел.

Документы, цитированные в отчете о поиске Патент 2010 года RU2403120C2

US 7137436 B2, 21.11.2006
US 5723101 A, 28.12.1993
Плазменная установка для плавки и рафинирования металла 1982
  • Найдек В.Л.
  • Костяков В.Н.
  • Полетаев Е.Б.
  • Волошин А.А.
  • Наривский А.В.
  • Ганжа Н.С.
  • Сытников А.В.
SU1048810A1

RU 2 403 120 C2

Авторы

Дробинин Роман Владимирович

Ложкин Алексей Александрович

Даты

2010-11-10Публикация

2009-02-09Подача