УСТРОЙСТВО ДЛЯ ПЛАВЛЕНИЯ И ЛИТЬЯ МЕТАЛЛОВ И СПЛАВОВ Российский патент 1997 года по МПК C22B9/18 

Описание патента на изобретение RU2089633C1

Изобретение относится к области специальной электрометаллургии, в частности к способам переплавки металлов и их сплавов в предназначенных для этого устройствам.

Известен способ непрерывного плазменно-дугового переплава крупногабаритного слитка в проходном тигле группой плазмотронов и разливкой расплавленного металла через два сливных обогреваемых носка в кристаллизаторы и одновременным вытягиванием двух слитков /1/.

Недостатки способа, а также устройства для осуществления известного способа заключаются в том, что локальное тепловое воздействие каждого плазмотрона на расплавляемую им поверхность расходуемого слитка, установленного в стационарном проходном тигле, не обеспечивает возможности интенсификации теплового обмена в зоне плавления, создания равноглубокой ванны жидкого металла в тигле, что влечет за собой неравномерный слив металла в кристаллизаторы. Результатом перечисленных недостатков является невысокое качество получаемых слитков. Кроме того, на обогрев крупногабаритных сливных носков проходного тигля затрачивается до 20-30% электроэнергии. Установка некомпактна, а осуществляемый на ней способ не обеспечивает возможности непрерывного получения кондиционированного слитка за один плавильный цикл.

Известен способ получения фасонных отливок электрошлаковым переплавом, включающий подачу шлака в тигель, плавление расходуемых электродов и слив металла через автоматически открывающееся донное отверстие тигля /2/.

Известно устройство для осуществления электрошлакового переплава, содержащее электродную каретку с электрододержателем и стопором, и каретку с плавильной емкостью, установленные с возможностью изменения положения относительно друг друга, а также центробежную машину для приема расплавленного металла. Плавильная емкость выполнена в виде тигля-миксера, имеющего донное сливное отверстие, которое закрывается пробкой, и механизм для сбивания ее. По высоте тигля расположены датчики сигнала открывания и закрывания сливного отверстия.

Недостатком известного способа и устройства является недостаточное усреднение металла в тигле по химическому составу и температуре, что влечет за собой неоднородность слитков по сечению. Слив металла производят с донных слоев тигля, куда оседают неметаллические включения с высокой плотностью. При попадании их в слиток образуются дефекты в виде включений и местной неоднородности. Сливное донное отверстие тигля выполнено узким, что обуславливает получение компактной струи расплава, без перемещения ее в процессе слива. Вследствие этого в слитке образуются усадочные раковины, формируются рыхлоты, ликвационная неоднородность. Недостаток заключается и в том, что в узком сливном отверстии тигля в процессе литья намораживается металл, который для обеспечения работоспособности устройства необходимо постоянно удалять, например, прожиганием.

Заявляемое изобретение направлено на повышение качества слитков при плавлении и литье металлов и их сплавов за счет повышения теплообмена при плавлении, рафинирующей способности процесса и сливу наиболее проплавленного металла.

Повышение качества слитков обеспечивается тем, что в способе плавления и литья металлов плавление металла осуществляется при вращении тигля, а слив расплава производят рассредоточенной струей с внутренних слоев расплава. Плавление металла осуществляют в тигле, выполненном с возможность вращения и со сливным отверстием увеличенного диаметра, расположенным выше уровня дна тигля.

Предлагаемый способ и устройство позволяет осуществлять плавление по унифицированной схеме как кусковой рассыпной шихты, так и расходуемых электродов и заготовок различными источниками нагрева, а также дает возможность получать кондиционные слитки, заготовки или гранулы (в зависимости от вида используемого металлоприемника) за один плавильный цикл.

При плазменно-дуговом и электронно-лучевом переплавах вращением тигля обеспечивается более равномерное распределение непрерывно поступающей шихты по всему объему тигля, а в процессе плавления происходит интенсивный барботаж плавящейся шихты с разогретым металлом, что обеспечивает устранение дефектов, связанных с неоднородностью шихты, и повышение теплообмена, а, следовательно, и производительности процесса. Скорость плавления во вращающемся тигле увеличивается на 15-25%
Центральный электрод, плазмотрон или иной источник нагрева наряду с участием в процессе плавления осуществляет обогрев сливного отверстия тигля, что позволяет исключить применение дополнительных источников нагрева и тем самым снизить расход электроэнергии. Нерасходуемый центральный электрод, кроме того, может выполнять функции стопора или регулятора слива.

В процессе плавления нерасплавившиеся куски шихты и неметаллические включения с высокой плотностью, например карбиды вольфрама, при плавке титанового лома оседают на дно тигля, а включения с низкой плотностью всплывают на поверхность расплава. Во избежание попадания нежелательных включений в струю сливаемого металла слив производят с внутренних слоев расплава, для чего сливное отверстие предлагается расположить выше уровня дна тигля, например на выступе в виде усеченного конуса. Высоту выступа выбирают в зависимости от глубины тигля, способа переплава (плазменно-дугового, электронно-лучевого, электрошлакового), качества шихты.

В результате увеличения диаметра сливного донного отверстия тигля повышается его пропускная способность, а при неизменной величине потока расплавленного металла обеспечивается получение рассредоточенной струи, т.е. сливаемый металл стекает по боковым стенкам отверстия. Падающая со стенок сливного отверстия рассредоточенная струя в большей степени охлаждается, вследствие чего ванна полужидкого металла получается более мелкой, а температурный градиент закристаллизовавшегося металла и жидкой ванны незначительным. Кроме того, рассредоточенная струя при падении образует большее число центров кристаллизации. Это позволяет получать слитки более однородные по структуре, без внутренних напряжений, с улучшенной боковой поверхностью. Для беспрепятственного слива металла источники нагрева располагают таким образом, чтобы осуществлялся обогрев контура сливного отверстия. Диаметр сливного отверстия выбирают в зависимости от диаметра кристаллизатора и рабочих конкретных режимов плавки. Рассредоточенный слив металла через отверстие увеличенного диаметра из вращающегося тигля обеспечивает лучший обогрев зоны слива, удобство визуального наблюдения и контроля.

На чертеже представлена схема способа плавления кусковой шихты с использованием плазмотронов переменного токам в качестве источников нагрева и слива металла во вращающийся кристаллизатор.

Плавление металла осуществляется в устройстве предлагаемой конструкции.

Устройство содержит вращающийся водоохлаждаемый кристаллизатор 1, тигель 2 для плавления и литья металлов, установленный с возможностью вращения, увеличенное донное сливное отверстие 3 которого расположено на выступе 4, имеющем форму усеченного конуса, группу плазмотронов 5, установленных над тиглем, и лоток 6 вибропитателя для непрерывной подачи шихты в тигель.

Способ с использованием плазмотронов в качестве источников нагрева осуществляют следующим образом.

Включают механизм вращения тигля 2 и зажигают плазмотроны 5. Из вибропитателя по лотку 6 подают шихту во вращающийся тигель. По мере наполнения тигля шихтой образуются оптимальные дуговые зазоры между плавящейся шихтой и плазмотронами. Наплавляют ванну жидкого металла, в которой в результате вращения тигля происходит интенсивный барботаж плавящейся шихты с перегретым металлом. Центральный плазмотрон помимо участия в плавлении металла обогревает по контуру сливное отверстие 3 тигля, расположенное на выступе 4, который имеет форму усеченного конуса. Вследствие наличия выступа слив металла происходит с внутренних (средних) наиболее прогретых слоев расплава, а в образованном боковой поверхностью тигля и выступа кольцевом углублении оседают нерасплавленные куски шихты и возможные неметаллические включения с высокой плотностью. По окончании процесса плавления прекращают подачу шихты в тигель. После слива последней порции расплавленного металла и очищения от металла сливного отверстия обогреваемым его плазмотроном отключают механизм вращения тигля и гасят плазмотроны. Контроль за параметрами процесса осуществляют визуально и с помощью микропроцессорной техники.

Способ опробован при получении слитков сплава Вт3-1 диаметром 485 мм. Для получения слитка весом 20 т шихту указанного сплава в количестве 21280 кг загрузили в бункер питателя. Плавление вели в вакууме (до 1•10-2 мм рт. ст.) группой плазмотронов переменного тока общей мощностью 7650 кВт. Ток дуги не превышал 25 кА, напряжение дуги 50-170 В. Линейная скорость вращения тигля 8 м/мин. Высота донного выступа тигля составила 1/2 глубины тигля, а диаметр сливного отверстия 1/3 диаметра кристаллизатора.

Похожие патенты RU2089633C1

название год авторы номер документа
СПОСОБ ВАКУУМНО-ПЛАЗМЕННОЙ ПЛАВКИ МЕТАЛЛОВ И СПЛАВОВ В ГАРНИСАЖНОЙ ПЕЧИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Агеев Сергей Викторович
  • Москвичев Юрий Петрович
RU2346221C1
УСТРОЙСТВО ДЛЯ ПЛАВКИ В ВАКУУМЕ ТУГОПЛАВКИХ И ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ 2014
  • Волков Анатолий Евгеньевич
RU2660784C2
СПОСОБ ПЛАВКИ И ЛИТЬЯ МЕТАЛЛА ВО ВРАЩАЮЩЕЙСЯ И НАКЛОННОЙ ЕМКОСТИ 2000
  • Волков А.Е.
RU2191211C2
СПОСОБ ПЛАВКИ ВЫСОКОРЕАКЦИОННЫХ МЕТАЛЛОВ И СПЛАВОВ НА ИХ ОСНОВЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Волков Анатолий Евгеньевич
RU2612867C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА МЕТАЛЛИЧЕСКОГО СЛИТКА 2020
  • Константинов Виктор Вениаминович
  • Константинов Андрей Викторович
  • Чупятов Николай Николаевич
  • Дьяков Валерий Вячеславович
  • Морозов Юрий Викторович
  • Комаров Максим Александрович
RU2753847C1
СПОСОБ ПЕРЕРАБОТКИ РАДИОКТИВНЫХ ОТХОДОВ, ОБРАЗУЮЩИХСЯ В ПРОЦЕССЕ РАЗРУШЕНИЯ ОБЛУЧЕННЫХ ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ, МЕТОДОМ ИНДУКЦИОННОГО ШЛАКОВОГО ПЕРЕПЛАВА В ХОЛОДНОМ ТИГЛЕ 2018
  • Каленова Майя Юрьевна
  • Щепин Андрей Станиславович
  • Будин Олег Николаевич
  • Дмитриева Анна Вячеславовна
  • Белозеров Владимир Васильевич
RU2765028C1
СПОСОБ ПЛАВКИ ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И СПЛАВОВ НА ИХ ОСНОВЕ 2012
  • Волков Анатолий Евгеньевич
RU2630138C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЛАЗМОТЕРМИЧЕСКОГО ЦЕНТРОБЕЖНОГО ВОССТАНОВЛЕНИЯ И РАЗДЕЛЕНИЯ ХИМИЧЕСКИХ ВЕЩЕСТВ ИЗ РУДЫ В ГРАВИТАЦИОННОМ ПОЛЕ 2020
  • Волков Александр Анатольевич
RU2758609C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ГРАНУЛ ЖАРОПРОЧНЫХ И ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И СПЛАВОВ, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ИСХОДНОЙ РАСХОДУЕМОЙ ЗАГОТОВКИ ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2008
  • Агеев Сергей Викторович
  • Москвичев Юрий Петрович
RU2413595C2
СПОСОБ ГАРНИСАЖНОЙ ПЛАВКИ МЕТАЛЛОВ И ГАРНИСАЖНАЯ ПЕЧЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Мусатов М.И.
  • Тетюхин В.В.
  • Фридман А.Ш.
  • Альтман П.С.
  • Фомичев В.С.
  • Сухоросов Б.Н.
  • Шалаев М.Н.
RU2246547C1

Реферат патента 1997 года УСТРОЙСТВО ДЛЯ ПЛАВЛЕНИЯ И ЛИТЬЯ МЕТАЛЛОВ И СПЛАВОВ

Использование: относится к области специальной электрометаллургии, конкретно к способам получения фасонных отливок электрошлаковым переплавом, и предназначенные для этого устройства. Сущность: тигель установлен с возможностью вращения вокруг оси, а его сливное отверстие выполнено в донном выступе, имеющем форму усеченного конуса. 1 ил.

Формула изобретения RU 2 089 633 C1

Устройство для плавления и литья металлов и сплавов, содержащее средство нагрева, установленный под ним тигель с отверстием для слива расплава и металлоприемник, отличающееся тем, что тигель установлен с возможностью вращения вокруг оси, а его сливное отверстие выполнено в донном выступе, имеющем форму усеченного конуса.

Документы, цитированные в отчете о поиске Патент 1997 года RU2089633C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ электрошлаковой выплавки полых слитков 1970
  • Медовар Б.И.
  • Артамонов В.Л.
  • Мартын В.М.
  • Чекотило Л.В.
SU340294A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Установка для получения фасонных отливок 1973
  • Помещиков А.Г.
  • Майдуров Н.И.
  • Хасин К.М.
  • Нарышкин Ю.А.
SU463330A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 089 633 C1

Авторы

Иванов А.В.

Даты

1997-09-10Публикация

1992-02-24Подача