ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА АЛЮМИНИЯ Российский патент 2011 года по МПК C01F7/42 C25B1/16 

Описание патента на изобретение RU2412905C1

Изобретение относится к области получения гидроксидов алюминия из металлического алюминия, которые могут быть использованы в качестве модифицирующих добавок для полимерных материалов, для получения активного оксида алюминия, для изготовления особо прочных и огнеупорных керамических изделий, композиционных материалов и антипиренов.

Обширная область применения обусловлена уникальными свойствами кристаллических модификаций гидроксида алюминия в виде бемита и байерита, получаемых синтетическим путем.

Известен электрохимический способ получения гидроксида алюминия из металлического алюминия и устройство для его осуществления. Способ включает приготовление суспензии высокодисперсного порошкообразного алюминия в воде, создание в реакторе давления насыщенных водяных паров, распыление суспензии, вывод из реактора смеси паров воды и водорода, а также вывод гидроксида алюминия в приемное устройство, см. RU Патент №2278077, MПK7 C01F 7/42, С01B 3/10, 2006 г.

Указанный способ получения гидроксида алюминия имеет ряд недостатков, препятствующих его широкому использованию в промышленном производстве:

- высокие энергетические затраты на приготовление суспензии, ее распыление, поддержание высокого давления и перемешивание;

- взрывоопасность процесса.

Наиболее близким по технической сущности является электрохимический способ получения гидроксида алюминия, включающий анодное растворение металлического алюминия в растворе аммонийных солей, фильтрацию и сушку осадка, в котором в качестве аммонийных солей используют углекислый или уксуснокислый аммоний и анодное растворение ведут с введением соляной кислоты, см. SU Патент №801469, МПК7 C01F 7/42, 2003 г.

По известному способу получают гидроксид алюминия бемитовой структуры, а не бифазную систему на основе бемита и байерита, что не позволяет получать высокодисперсные частицы и сужает область использования. К недостаткам способа также относятся использование аммонийной соли, приводящей к появлению паров аммиака в процессе электролиза, а также необходимость дополнительного введения соляной кислоты, имеющей второй класс опасности (вещества высокоопасные) и приводящей к химическому растворению алюминия, т.е. образованию нецелевого продукта (хлорида алюминия).

Задачей изобретения является создание электрохимического способа получения гидроксида алюминия с регулируемым соотношением фаз бемита и байерита и размером частиц не более 200 нм.

Техническая задача решается электрохимическим способом получения гидроксида алюминия, включающим анодное растворение металлического алюминия в хлоридсодержащем растворе электролита, с последующей отмывкой и термообработкой, в котором анодное растворение ведут в коаксиальном электролизере при условии превышения площади анода на два и более порядка площади катода, при концентрации хлорида в растворе электролита 0,05-0,8 моль/л и анодной плотности тока 50-300 А/м2, с последующей выдержкой осадка в растворе электролита.

Решение технической задачи позволяет регулировать соотношение фаз бемита и байерита и получать наноразмерные частицы гидроксида алюминия с диапазоном размеров 10-200 нм.

Электролизер для обработки водных растворов, используемый в заявляемом способе, содержит корпус с размещенными в нем коаксиально установленными цилиндрическими электродами, см. SU Авторское свидетельство №1597344, МПК C02F 1/46, 1990.

Указанный бездиафрагменный электролизер использовался в прикладной электрохимии для обработки водных растворов в гальваническом производстве с целью получения растворов с повышенным содержанием ионов водорода и гидроксида.

Устройство содержит корпус 1 (камеру), крышку 2; анод, выполненный в форме цилиндра 3; катод, расположенный строго по центру камеры 4; входные клеммы электродов 5, см. фиг.1.

Далее изобретение иллюстрируют следующие примеры конкретного выполнения.

Пример 1.

Электрохимический способ получения гидроксида алюминия осуществляют в коаксиальном электролизере с источником постоянного тока, вместимостью рабочей камеры 400 см3. Катод электролизера изготовлен из стали Х18Н10Т, а анод из алюминиевой фольги с содержанием элементного алюминия ≥99,5%. В рабочую камеру электролизера заливают 300 см3 хлоридсодержащего раствора электролита с концентрацией хлорида натрия 0,05 моль/л и включают источник постоянного тока; анодная плотность тока составляет 167 А/м2. После анодного растворения металлического алюминия (время проведения электролиза 1,5 часа) осадок выдерживают в растворе электролита, а затем его отмывают и высушивают при температуре 403 К до постоянной массы. Данные по составу гидроксида алюминия приведены в таблице.

Общий выход продукта описанного процесса в пересчете на гидроксид алюминия составляет около 50 г/ч.

Пример 2-4 осуществляют при других режимных условиях аналогично примеру 1, см таблицу 1.

Результаты по примерам 1-4 приведены в таблице 2.

Таблица 1 Режимные условия Пример 1 Пример 2 Пример 3 Пример 4 Концентрация хлорида натрия в растворе электролита, моль/л, 0,05 0,5 0,2 0,8 Анодная плотность тока, А/м2 167,0 83,3 53,3 300,0 Время выдержки в растворе электролита, час 42 46 51 53 Время проведения электролиза, час 1,5 1,5 1,2 1,5

Таблица 2 Показатели Данные по составу оксида алюминия Пример 1 Пример 2 Пример 3 Пример 4 Размеры частиц получаемого гидроксида алюминия частицы размером ~50 нм и агрегаты размером >150-200 нм Соотношение фаз бемит/байерит до термообработки 4,92 0,45 0,72 6,20

Таким образом, управление параметрами электрохимического процесса дает возможность регулировать соотношение фаз бемита и байерита и получать наночастицы с диапазоном размеров 10-200 нм.

Похожие патенты RU2412905C1

название год авторы номер документа
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ 2009
  • Дресвянников Александр Федорович
  • Петрова Екатерина Владимировна
  • Цыганова Мария Алексеевна
RU2412904C1
Способ получения высокодисперсной алюмоциркониевой оксидной системы 2016
  • Дресвянников Александр Федорович
  • Петрова Екатерина Владимировна
  • Хайруллина Алина Исмагиловна
RU2615513C1
Способ получения модифицированной высокодисперсной алюмооксидной системы для технической керамики 2021
  • Дресвянников Александр Федорович
  • Петрова Екатерина Владимировна
  • Хайруллина Алина Исмагиловна
  • Кашфразыева Ляйсан Илдусовна
RU2762226C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНОГО ГИДРОКСИДА АЛЮМИНИЯ И ОКСИДА АЛЮМИНИЯ НА ЕГО ОСНОВЕ 2010
  • Дресвянников Александр Федорович
  • Петрова Екатерина Владимировна
RU2465205C2
Способ приготовления катализатора изомеризации парафинов на основе байеритного оксида алюминия 2017
  • Боруцкий Павел Николаевич
  • Козлова Елена Григорьевна
  • Красий Борис Васильевич
  • Кустова Тамара Сергеевна
  • Сорокин Илья Иванович
RU2669199C1
Способ электрохимического получения порошков оксида алюминия 2017
  • Балабанов Станислав Сергеевич
  • Дроботенко Виктор Васильевич
  • Ростокина Елена Евгеньевна
RU2664135C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ВЫДЕЛЕНИЯ МЕДИ В ХЛОРИСТОВОДОРОДНОМ РАСТВОРЕ 2004
  • Робинсон Дуглас Дж.
  • Макдональд Стейси А.
  • Ирицни Владимир
RU2337182C2
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА СВИНЦА 1991
  • Зарубицкий О.Г.
  • Малашок А.Н.
  • Власенко Г.Г.
RU2006525C1
Способ получения наноразмерных металлических частиц 2022
  • Остаева Галина Юрьевна
  • Елисеева Екатерина Александровна
  • Исаева Ирина Юрьевна
  • Одинокова Ирина Вячеславовна
  • Моренко Иван Владимирович
RU2816468C1
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСНЫХ ЧАСТИЦ МЕДИ ЭЛЕКТРОХИМИЧЕСКИМ МЕТОДОМ 2019
  • Остаева Галина Юрьевна
  • Одинокова Ирина Вячеславовна
  • Бусько Владимир Иосифович
  • Елисеева Екатерина Александровна
  • Исаева Ирина Юрьевна
RU2708719C1

Реферат патента 2011 года ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА АЛЮМИНИЯ

Изобретение относится к области получения гидроксида алюминия из металлического алюминия, который может быть использован в качестве модифицирующей добавки для полимерных материалов, для получения активного оксида алюминия, для изготовления особо прочных и огнеупорных керамических изделий, композиционных материалов и антипиренов. Электрохимический способ получения оксида алюминия включает анодное растворение металлического алюминия в хлоридсодержащем растворе электролита с последующей отмывкой и термообработкой. Анодное растворение ведут в коаксиальном электролизере при условии, что площадь анода на два и более порядка превышает площадь катода, с последующей выдержкой осадка в растворе электролита. Концентрация хлорида в растворе электролита составляет 0,05-0,8 моль/л, а анодная плотность тока 50-300 А/м2. Изобретение позволяет регулировать соотношение фаз бемита и байерита и получать наночастицы гидроксида алюминия с диапазоном размеров 10-200 нм. 1 ил., 2 табл.

Формула изобретения RU 2 412 905 C1

Электрохимический способ получения гидроксида алюминия, включающий анодное растворение металлического алюминия в хлоридсодержащем растворе электролита с последующей отмывкой и сушкой осадка, отличающийся тем, что анодное растворение ведут в коаксиальном электролизере, в котором площадь анода превышает площадь катода не менее чем на два порядка, при концентрации хлорида в растворе электролита 0,05-0,8 моль/л, при анодной плотности тока 50-300 А/м2, с последующей выдержкой осадка в растворе электролита.

Документы, цитированные в отчете о поиске Патент 2011 года RU2412905C1

SU 801469 A1, 20.07.2003
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА АЛЮМИНИЯ 1997
  • Родионов Ю.М.
  • Темош И.И.
  • Темош З.Ф.
RU2114785C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ 1998
  • Косинцев В.И.
  • Коробочкин В.В.
  • Ковалевский Е.П.
  • Быстрицкий Л.Д.
RU2135411C1
Элетрохимический способ получения окиси алюминия 1976
  • Коток Людмила Анатольевич
  • Байдашникова Зоя Ефимовна
  • Мешкова Ольга Васильевна
  • Остис Елена Константиновна
  • Экель Виктор Аркадьевич
SU621644A1
US 4151267 A, 24.04.1979.

RU 2 412 905 C1

Авторы

Дресвянников Александр Федорович

Петрова Екатерина Владимировна

Цыганова Мария Алексеевна

Даты

2011-02-27Публикация

2009-07-29Подача