СПОСОБ ПОЛУЧЕНИЯ ТИТАН-МАГНИЕВОГО НАНОКАТАЛИЗАТОРА (СО)ПОЛИМЕРИЗАЦИИ АЛЬФА-ОЛЕФИНОВ И СОПРЯЖЕННЫХ ДИЕНОВ Российский патент 2011 года по МПК C08F4/64 C08F4/642 C08F210/02 C08F36/04 

Описание патента на изобретение RU2425059C1

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения полимеров и сополимеров альфа-олефинов и сопряженных диенов.

Известен способ получения титан-магниевого катализатора (со)полимеризации альфа-олефинов, включающий взаимодействие дихлорида магния, спирта и основания Льюиса, нагревание полученной смеси до плавления, быстрое охлаждение, многократную промывку, последующее взаимодействие полученного твердого аддукта с соединением титана и электронодонором и многократную промывку полученного твердого продукта (ЕР 1572756).

Известен также способ получения титан-магниевого катализатора полимеризации этилена в сверхвысокомолекулярный полиэтилен взаимодействием в среде хлорбензола порошкообразного магния с дибутиловым эфиром и раствором йода в н-бутилхлориде с последующим взаимодействием полученного раствора магнийорганического соединения с соединением кремния, в качестве которого используют продукт взаимодействия соединения формулы R'kSiCl4-k, где k=0-l, с тетраэтоксидом кремния, добавлением тетрахлорида титана к полученной суспензии магнийсодержащего носителя, нагреванием смеси, выдерживанием ее и многократным промыванием полученного осадка гептаном (ЕР 2081969).

Известен способ получения титан-магниевого катализатора (со)полимеризации сопряженных диенов по следующей методике: в реактор загружают магниевые стружки, растворитель, н-бутилхлорид (1/5 часть от всего количества) и кристаллический йод, температуру поднимают до 65-70°С и постепенно добавляют остаток бутилхлорида, реакцию ведут 4 часа, после охлаждения суспензии растворитель декантируют и осадок промывают растворителем от непрореагировавшего н-бутилхлорида, затем заливают растворителем и при 60-70°С добавляют тетрахлорид титана, через 5-6 часов реактор охлаждают, растворитель декантируют, образующийся титан-магниевый катализатор отмывают от избытка тетрахлорида титана (RU 2196782).

Все перечисленные известные способы получения титан-магниевого катализатора являются многостадийными, требующими неоднократных отмывок от избытка используемых реагентов и, в связи с этим, достаточно большого времени приготовления.

Наиболее близким к предлагаемому изобретению является известный способ получения титан-магниевого катализатора (со)полимеризации альфа-олефинов и сопряженных диенов взаимодействием магния с тетрахлоридом титана в присутствии н-бутилхлорида (RU 2290413). Взаимодействие магния с тетрахлоридом титана проводят при содержании н-бутилхлорида 14,5-15,0 мл на 1 г магния. Объемное соотношение тетрахлорид титана:н-бутилхлорид составляет 1:(53-80).

Указанный способ получения катализатора осуществляется по существенно упрощенной технологии, в одну стадию. По результатам дополнительно проведенных исследований методом электронной просвечивающей микроскопии установлено, что получаемый катализатор представляет собой тонкодисперсные наночастицы, склонные к образованию фрактальных структур, характерных для наноразмерных объектов, что позволяет его отнести к нанокатализаторам.

Недостатком нанокатализатора, полученного известным способом, является его сравнительно невысокая активность.

Техническая задача изобретения состоит в создании нового способа получения титан-магниевого нанокатализатора, лишенного указанного недостатка.

Технический результат предлагаемого изобретения заключается в повышении активности нанокатализатора в процессах (со)полимеризации альфа-олефинов и сопряженных диенов.

Указанный технический результат достигается тем, что способ получения титан-магниевого нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов взаимодействием магния с тетрахлоридом титана в присутствии н-бутилхлорида осуществляют при содержании н-бутилхлорида 6,00-8,70 мл на 1 г магния.

Предпочтительно, взаимодействие осуществляют при объемном соотношении тетрахлорид титана:н-бутилхлорид 1:(47-67).

Нижеследующие примеры 1-6 иллюстрируют предлагаемый способ получения нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов.

Примеры 1-6

В реактор с мешалкой в атмосфере инертного газа (аргона, азота) загружают одновременно магниевые стружки, н-бутилхлорид и тетрахлорид титана. Реакцию проводят при 78-80°С в течение 2-4 часов. Выход нанокатализатора составляет 98±2% по сравнению с расчетным.

В таблице представлены условия получения нанокатализатора и содержание в нем титана в % мас. на нанокатализатор. Для сравнения приведены условия получения нанокатализатора по примерам 1-4 RU 2290413 и содержание в нем титана (контрольные примеры 1к-4к).

Методом электронной просвечивающей микроскопии установлено, что полученный нанокатализатор представляет собой наночастицы (15-35 нм), склонные к образованию фрактальных структур.

Полученный нанокатализатор можно хранить, например, в суспензии гексана или гептана в атмосфере аргона с концентрацией титана, составляющей 0,05-0,10 моль/л.

Полученный нанокатализатор может использоваться в составе различных каталитических систем в процессах полимеризации и (со)полимеризации альфа-олефинов и сопряженных диенов, в том числе, при необходимости, предварительно нанесенным на инертный носитель и/или, например, в случае полимеритзации пропилена, модифицированным электронодонорами.

Для определения активности полученного титан-магниевого нанокатализатора были проведены эксперименты по (со)полимеризации различных альфа-олефинов и различных сопряженных диенов. Во всех экспериментах, вне зависимости от природы (со)мономеров, нанокатализатор, полученный способом по предлагаемому изобретению, показал активность, в 2,5 и более раз превышающую активность нанокатализатора по RU 2290413. Наблюдаемая высокая эффективность полученных по изобретению нанокатализаторов объясняется особенностью их структуры, образующейся в условиях пониженного содержания н-бутилхлорида по отношению к магнию в реакционной среде. Дополнительным подтверждением получения новой структуры нанокатализатора являются результаты исследования образцов полимеров, полученных в экспериментах по примеру 7.

Нижеследующие примеры 7-11 иллюстрируют использование нанокатализатора, полученного способом по предлагаемому изобретению, но не ограничивают его.

Пример 7

Полимеризацию этилена проводят в литровом автоклаве. В качестве катализатора используют титан-магниевые нанокатализаторы, полученные по примерам 1-6, в сочетании с триэтилалюминием (ТЭА). Полимеризацию проводят в суспензии растворителя (гексан - 0,5 л), при давлении этилена 2 атм и температуре 75±5°С, на предварительно сформированной каталитической системе нанокатализатор + ТЭА в течение 2 часов.

Выход сверхвысокомолекулярного полиэтилена (ММ=/1,0-1,9/·106), полученного с использованием нанокатализаторов по примерам 1-6, составляет 200-340 г, активность нанокатализаторов, соответственно, 100-170 кг полиэтилена /г Ti·ч·атм.

Установлено, что скорость полимеризации этилена, полученного с использованием нанокатализаторов по примерам 1-6, практически стационарна в течение проведения процесса, что свидетельствует о стабильности катализатора и отсутствии диффузионных ограничений несмотря на высокий уровень его дисперсности.

В сравнительных экспериментах процесс проводили в вышеописанных условиях, но с использованием нанокатализаторов по RU 2290413 (по примерам 1к-4к).

Выход сверхвысокомолекулярного полиэтилена (ММ=/1,0-1,9/·106), полученного с использованием нанокатализаторов по примерам 1к-4к, составляет 80-100 г, активность нанокатализаторов, соответственно, 40-50 кг полиэтилена/г Ti·ч·атм.

Результаты исследования методами рентгеноструктурного анализа и дифференциальной сканирующей калориметрии образцов сверхвысокомолекулярного полиэтилена, полученного в экспериментах по примеру 7, показали следующее.

Для образцов полимеров, полученных в экспериментах по изобретению, средняя температура плавления составляет 144°С, средняя величина степени кристалличности составляет 74%, для образцов полимеров, полученных в сравнительных экспериментах, - соответственно, 138,5°С и 62%.

Рентгенограммы насцентных образцов, зарегистрированные при 20°С (CuKα, λ=0.154 нм, изогнутый кристалл-монохроматор кварца на первичном пучке), показывают, что содержание моноклинной кристаллической фазы практически одинаково во всех исследованных образцах, полученных в экспериментах по изобретению, и составляет около 50% от общей кристаллической фазы сверхвысокомолекулярного полиэтилена.

В образцах, полученных в сравнительных экспериментах, содержание моноклинной кристаллической фазы составляет 10-25% от общей кристаллической фазы сверхвысокомолекулярного полиэтилена.

Различие в свойствах образцов сверхвысокомолекулярного полиэтилена, полученного в экспериментах по изобретению и сравнительных экспериментах, дополнительно подтверждает, что способ по изобретению приводит к получению нанокатализатора, имеющего структуру, отличную от структуры нанокатализатора, полученного способом по RU 2290413.

Сверхвысокомолекулярный полиэтилен, полученный с использованием нанокатализатора, приготовленного способом по предлагаемому изобретению, как содержащий большее количество моноклинной фазы, является более технологичным в процессах переработки в сверхвысокомодульные, сверхвысокопрочные волокна.

Пример 8

В условиях примера 5 по RU 2290413 была проведена сополимеризация этилена с альфа-олефинами, но в присутствии нанокатализаторов, полученных в примерах 1-6 по предлагаемому изобретению, также нанесенных на инертный носитель. Выход сополимера составил 350-420 кг/г Ti, что соответствует активности нанокатализатора - 7,8-9,3 кг сополимера/г Ti·ч·атм.

В примере 5 по RU 2290413 выход сополимера составил 140 кг/г Ti, что соответствует активности нанокатализатора - 3,1 кг сополимера/г Ti·ч·атм.

Пример 9

В условиях примера 6 по RU 2290413 была проведена полимеризация бутадиена, но в присутствии нанокатализатора, полученного в примере 2 по предлагаемому изобретению. Активность нанокатализатора составила 52 кг полибутадиена/г Ti.

В примере 6 по RU 2290413 активность нанокатализатора составила 21 кг полибутадиена/г Ti.

Пример 10

В условиях примера 7 по RU 2290413 была проведена полимеризация изопрена, но в присутствии нанокатализатора, полученного в примере 5 по предлагаемому изобретению. Активность нанокатализатора составила 35 кг полиизопрена/г Ti.

В примере 7 по RU 2290413 активность нанокатализатора составила 13 кг полиизопрена/г Ti.

Пример 11

Сополимеризация бутадиена и изопрена была проведена в условиях примера 8 по RU 2290413, но в присутствии нанокатализатора, полученного в примере 1 по предлагаемому изобретению. Выход сополимера 85% от загруженных сомономеров был получен через 40 мин от начала сополимеризации.

В примере 8 по RU 2290413 выход сополимера 85% был получен при времени сополимеризации 2 часа.

Таблица № примера Mg, г н-BuCl, мл TiCL4, мл BuCl, мл/г Mg TiCl4/н - BuCl, объемное [Ti], % мас. 1 12 75 1,6 6,25 1:47 1,50 2 10 60 0,9 6,00 1:66 1,10 3 10 60 1,1 6,00 1:55 1,20 4 24 175 3,2 6,00 1:55 1,50 5 20 175 2,6 8,70 1:67 1,31 6 300 2200 40 7,30 1:55 1,46 Патент RU 2290413 3,6 54 0,9 15,0 1:60 2,36 12,0 180 3,4 15,0 1:53 2,40 24,0 350 4,4 14,5 1:80 1,36 12,0 175 2,2 14,5 1:80 1,36

Похожие патенты RU2425059C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТИТАН-МАГНИЕВОГО КАТАЛИЗАТОРА И ТИТАН-МАГНИЕВЫЙ КАТАЛИЗАТОР (СО)ПОЛИМЕРИЗАЦИИ АЛЬФА-ОЛЕФИНОВ И СОПРЯЖЕННЫХ ДИЕНОВ 2005
  • Антипов Евгений Михайлович
  • Мушина Евгения Ароновна
  • Платэ Николай Альфредович
  • Подольский Юрий Яковлевич
  • Фролов Вадим Михайлович
  • Хаджиев Саламбек Наибович
  • Чинова Мария Сергеевна
RU2290413C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО ТИТАН-МАГНИЕВОГО НАНОКАТАЛИЗАТОРА 2012
  • Нифантьев Илья Эдуардович
  • Сметанников Олег Владимирович
  • Тавторкин Александр Николаевич
  • Чинова Мария Сергеевна
RU2486956C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОЙ ГУТТАПЕРЧИ 2005
  • Антипов Евгений Михайлович
  • Горбик Николай Сафронович
  • Дулькина Светлана Алексеевна
  • Золотарев Валентин Лукьянович
  • Мушина Евгения Ароновна
  • Платэ Николай Альфредович
  • Подольский Юрий Яковлевич
  • Разумов Владимир Владимирович
  • Саяпина Марина Александровна
  • Сметанников Олег Владимирович
  • Федотов Юрий Иванович
  • Хаджиев Саламбек Наибович
RU2295541C1
АГЕНТ СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Русинов Павел Геннадьевич
  • Балашов Алексей Владимирович
  • Яковлев Сергей Вячеславович
  • Жаров Сергей Сергеевич
  • Рыжков Олег Витальевич
RU2599986C1
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННОГО КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С α - ОЛЕФИНАМИ 1993
  • Захаров В.А.
  • Микенас Т.Б.
  • Ечевская Л.Г.
  • Махтарулин С.И.
RU2047355C1
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ НА ОСНОВЕ ПОЛИАЛЬФАОЛЕФИНОВ (ВАРИАНТЫ) 2015
  • Русинов Павел Геннадьевич
  • Балашов Алексей Владимирович
  • Яковлев Сергей Вячеславович
  • Жаров Сергей Сергеевич
  • Корчуганова Ирина Георгиевна
RU2590535C1
ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2015
  • Русинов Павел Геннадьевич
  • Балашов Алексей Владимирович
  • Нифантьев Илья Эдуардович
RU2579588C1
СПОСОБ ПОЛУЧЕНИЯ НАНЕСЕННОГО КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ 1994
  • Захаров В.А.
  • Махтарулин С.И.
  • Сергеев С.А.
  • Микенас Т.Б.
  • Никитин В.Е.
  • Ечевская Л.Г.
  • Хмелинская А.Д.
RU2064836C1
СПОСОБ ПОЛУЧЕНИЯ АГЕНТА СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ 2000
  • Плаксунов Т.К.
  • Ахметзянов В.З.
  • Зиятдинов А.Ш.
  • Шепелин В.А.
RU2171817C1
ТИТАНСОДЕРЖАЩИЙ КОМПОНЕНТ КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА, КАТАЛИЗАТОР ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И СПОСОБ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА 1993
  • Мамору Киока[Jp]
  • Тсунео Йасики[Jp]
RU2098428C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ТИТАН-МАГНИЕВОГО НАНОКАТАЛИЗАТОРА (СО)ПОЛИМЕРИЗАЦИИ АЛЬФА-ОЛЕФИНОВ И СОПРЯЖЕННЫХ ДИЕНОВ

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения (со)полимеров альфа-олефинов и сопряженных диенов. Описан способ получения титан-магниевого нанокатализатора путем взаимодействия магния с тетрахлоридом титана в присутствии н-бутилхлорида. Содержание бутилхлорида составляет 6,0-8,7 мл на 1 г магния. Объемное соотношение тетрахлорида титана: н-бутилхлорида составляет 1:(47-67). Технический результат - повышение активности катализатора. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 425 059 C1

1. Способ получения титан-магниевого нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов взаимодействием магния с тетрахлоридом титана в присутствии н-бутилхлорида, отличающийся тем, что взаимодействие осуществляют при содержании бутилхлорида 6,0-8,7 мл на 1 г магния.

2. Способ получения титан-магниевого нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов по п.1, отличающийся тем, что взаимодействие осуществляют при объемном соотношении тетрахлорид титана: н-бутилхлорид 1:(47-67).

Документы, цитированные в отчете о поиске Патент 2011 года RU2425059C1

СПОСОБ ПОЛУЧЕНИЯ ТИТАН-МАГНИЕВОГО КАТАЛИЗАТОРА И ТИТАН-МАГНИЕВЫЙ КАТАЛИЗАТОР (СО)ПОЛИМЕРИЗАЦИИ АЛЬФА-ОЛЕФИНОВ И СОПРЯЖЕННЫХ ДИЕНОВ 2005
  • Антипов Евгений Михайлович
  • Мушина Евгения Ароновна
  • Платэ Николай Альфредович
  • Подольский Юрий Яковлевич
  • Фролов Вадим Михайлович
  • Хаджиев Саламбек Наибович
  • Чинова Мария Сергеевна
RU2290413C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОЙ ГУТТАПЕРЧИ (ВАРИАНТЫ) 2001
  • Антипов Е.М.
  • Арутюнов И.А.
  • Габутдинов М.С.
  • Гавриленко И.Ф.
  • Гаврилов Ю.А.
  • Кудряшов В.Н.
  • Махина Т.К.
  • Медведева Ч.Б.
  • Мушина Е.А.
  • Подольский Ю.Я.
  • Тинякова Е.И.
  • Фролов В.М.
  • Черевин В.Ф.
  • Юсупов Н.Х.
RU2196782C2
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОЙ ГУТТАПЕРЧИ 2005
  • Антипов Евгений Михайлович
  • Горбик Николай Сафронович
  • Дулькина Светлана Алексеевна
  • Золотарев Валентин Лукьянович
  • Мушина Евгения Ароновна
  • Платэ Николай Альфредович
  • Подольский Юрий Яковлевич
  • Разумов Владимир Владимирович
  • Саяпина Марина Александровна
  • Сметанников Олег Владимирович
  • Федотов Юрий Иванович
  • Хаджиев Саламбек Наибович
RU2295541C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА 1982
  • Махтарулин С.И.
  • Сергеев С.А.
  • Захаров В.А.
  • Никитин В.Е.
  • Хмелинская А.Д.
  • Саппаев М.С.
  • Толстов Г.П.
  • Каймашников В.М.
  • Балашов В.В.
  • Шишлов С.С.
SU1053352A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 425 059 C1

Авторы

Антипов Евгений Михайлович

Мушина Евгения Ароновна

Сметанников Олег Владимирович

Чинова Мария Сергеевна

Иванюк Алексей Владимирович

Адров Олег Игоревич

Хаджиев Саламбек Наибович

Подольский Юрий Яковлевич

Строганов Владимир Сергеевич

Даты

2011-07-27Публикация

2010-01-28Подача