СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОУГЛЕРОДИСТОЙ ФЕРРИТО-ПЕРЛИТНОЙ СТАЛИ Российский патент 2011 года по МПК C21D8/02 C21D9/46 C21D1/02 

Описание патента на изобретение RU2427653C1

Изобретение относится к технологии термической обработки листового проката, предназначенного для изготовления деталей и узлов конструкций, работающих при низких до -60°C температурах, например контейнеров для перевозки, и длительного хранения отработавшего ядерного топлива.

Известны способы термической обработки изделий из сталей перлитного класса, позволяющие снизить в них внутренние напряжения и повысить вязко-пластические свойства (Гуляев А.П. «Металловедение», М.: «Металлургия», 1977 г., стр.275-281).

Известен способ термической обработки низкоуглеродистых сталей, состоящий из отжига или нормализации, который позволяет снизить внутренние напряжения и повысить хладостойкость. Согласно известному способу материал нагревают до температуры выше точки Ас3, выдерживают при этой температуре и медленно охлаждают с печью или на воздухе. Недостатком этого способа является выделение из аустенита в процессе охлаждения феррито-перлитной смеси с пластинчатой формой цементита и предвыделений третичного цементита, которые приводят к охрупчиванию стали при низкой температуре (В.Г.Сорокин, А.В.Волосников и др. «Марочник сталей и сплавов», М.: «Машиностроение», 1989 г.)]

Наиболее близким по технической сущности и достигаемому эффекту является способ производства листов из хладостойкой стали, изложенный в патенте №2337976, опубликованном 10.11.2008 г. Способ включает предварительную деформацию при температуре 1000-850°C с суммарным обжатием 65-75%, окончательную деформацию при температуре 750-700°C с обжатием за проход не менее 12% и суммарным обжатием не менее 60%, дальнейшую закалку стали ведут с прокатного нагрева (с температуры 700-750°C) со скоростью более 35°C/мин до температуры 150±10°C, затем - на воздухе, последующий высокий отпуск ведут при температуре 650±20°C с выдержкой 1,0-1,5 мин/мм толщины листа с последующим охлаждением на воздухе.

Недостатками известного способа, как установлено исследованиями, являются недостаточно высокая прочность и хладостойкость низкоуглеродистых феррито-перлитных сталей за счет возникновения в них зон предвыделений третичного цементита при охлаждении после высокого отпуска.

Техническим результатом изобретения является повышение прочности и хладостойкости низкоуглеродистой феррито-перлитной стали.

Технический эффект достигается за счет того, что в способе термической обработки листового проката из низкоуглеродистой феррито-перлитной стали, включающем предварительную деформацию при температуре 1000-850°C с суммарным обжатием 65-75%, окончательную деформацию с обжатием за проход не менее 12% и суммарным обжатием не менее 60%, дальнейшую закалку ведут с прокатного нагрева со скоростью более 35°C/мин до температуры 150±10°C, затем - на воздухе, далее высокий отпуск, согласно изобретению высокий отпуск осуществляют при температуре 600±10°C с выдержкой 4,0-6,0 мин/мм от толщины, после чего проводят стабилизирующий отпуск при температуре 460+10°C с выдержкой 3-5 час с последующим охлаждением на воздухе.

Как установлено исследованиями, осуществляемый высокий отпуск в диапазоне температур 600±10°C с охлаждением на воздухе приводит к возрастанию прочности стали и к образованию участков с предвыделениями третичного цементита, что резко снижает хладостойкость стали. Это вызвано тем, что предвыделения третичного цементита имеют параметры решетки, отличные от матрицы, и в последней создают растянуто-сжатые области, что приводит к возникновению напряжений 2 рода, которые снижают хладостойкость стали.

На хладостойкость стали оказывает влияние и длительность выдержки при отпуске. Так при увеличении длительности высокого отпуска от 1,5 до 4,0-6,0 мин/мм толщины листа происходит коагуляция цементитных частиц, что повышает хладостойкость стали. С увеличением длительности отпуска, превышающей 6 мин/мм толщины листа из-за роста частиц цементита по границам зерен за счет растворения частиц Fe3C внутри α-фазы и их огрубления, происходит снижение хладостойкости.

Дальнейшее повышение хладостойкости листового проката возможно благодаря проведению после закалки с прокатного нагрева и основного отпуска дополнительного стабилизирующего отпуска при температуре 460+10°C с выдержкой 3,0-5,0 час с последующим охлаждением на воздухе. Известно, что после закалки и высокого отпуска с охлаждением на воздухе низкоуглеродистая феррито-перлитная сталь приобретает сорбитную структуру, т.е. феррит-цементитную смесь, где цементит имеет округлую форму. В процессе нагрева при отпуске стали до температуры 600±10°C происходит коагуляция цементита, что позволяет получать зернистый перлит, мелкие карбиды которого затрудняют перемещение дислокаций и повышают прочностные свойства стали. Кроме того, при отпуске стали имеет место растворение основной массы третичного цементита. При последующем быстром охлаждении на воздухе из-за пересыщения феррита углеродом образуются зоны предвыделения третичного цементита.

Проведенные исследования методом количественной металлографии показали, что при проведении дополнительного отпуска при температуре 460+10°C в течение 3,0-5,0 час происходят выделение и коагуляция третичного цементита, что приводит к повышению хладостойкости листового проката. Таким образом данный режим позволяет получать сталь повышенной прочности и хладостойкости (Таблица 2).

При температуре ниже 460°C выделившиеся мелкие частицы третичного цементита затрудняют движение дислокаций, что приводит к снижению ударной вязкости при отрицательных температурах.

При температуре выше 460°C происходит выделение мелких тугоплавких карбидов хрома, ванадия и ниобия, что также приводит к снижению ударной вязкости.

Пример выполнения заявленного способа:

на металлургическом заводе ОАО “Северсталь” была выплавлена низкоуглеродистая феррито-перлитная сталь марки 09Г2СА-А, химический состав которой приведен в Таблице 1.

Таблица 1 Химический состав стали 09Г2СА-А Марка стали Содержание элементов, мас.% C Si Mn P S Cr Ni Cu V Nb Fe 09Г2СА-А 0,009 0,54 1,42 0,006 0,004 0,20 0,25 0,10 0,04 0,05 Остальное

Из этой стали был изготовлен листовой прокат толщиной 60 мм, который подвергался закалке с прокатного нагрева с температур 750 и 700°C в воде со скоростью порядка 40°C/мин до температуры 150°C далее на воздухе. Из листового проката были вырезаны заготовки размером 20×20×60 мм, которые были подвергнуты высокому отпуску при температурах 590 и 610°C с выдержкой в течение 4,0; 5,0 и 6,0 час с последующим охлаждением на воздухе.

Затем эти заготовки были подвергнуты дополнительному отпуску при температурах 460 и 470°C с выдержкой 3,0; 4,0 и 5,0 час с последующим охлаждением на воздухе.

Из этих заготовок были изготовлены разрывные образцы по ГОСТ 1497-84 и ударные образцы «Шарли» с острым надрезом, которые были испытаны при температурах +20 и -60°C по ГОСТ 9454. Результаты испытаний представлены в Таблице 2.

Как видно из полученных результатов, образцы, обработанные по предлагаемому способу, имеют более высокие значения прочностных свойств и хладостойкости по сравнению с образцами, термообработанными по известному способу.

Ожидаемый технико-экономический эффект по сравнению с прототипом выразится в возможности создания новых изделий специальной техники повышенной надежности и долговечности из экономнолегированной низкоуглеродистой феррито-перлитной стали за счет повышения ее прочностных свойств и хладостойкости.

Похожие патенты RU2427653C1

название год авторы номер документа
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОУГЛЕРОДИСТОЙ ФЕРРИТО-ПЕРЛИТНОЙ СТАЛИ 2009
  • Оленин Михаил Иванович
  • Быковский Николай Георгиевич
  • Бережко Борис Иванович
  • Стольный Виктор Иванович
  • Михайлов-Смольняков Максим Сергеевич
RU2414517C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ ХЛАДОСТОЙКОЙ СТАЛИ 2009
  • Карзов Георгий Павлович
  • Бережко Борис Иванович
  • Стольный Виктор Иванович
  • Зимин Герман Георгиевич
  • Быковский Николай Георгиевич
  • Попов Олег Григорьевич
  • Оленин Михаил Иванович
  • Бушуев Сергей Владимирович
RU2394108C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ ИЗ НИЗКОУГЛЕРОДИСТЫХ ФЕРРИТОПЕРЛИТНЫХ СТАЛЕЙ 2008
  • Оленин Михаил Иванович
  • Быковский Николай Георгиевич
  • Бережко Борис Иванович
  • Калиничева Надежда Васильевна
  • Евдокимова Наталья Витальевна
  • Лебедева Надежда Валерьевна
RU2373292C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ СОЕДИНЕНИЙ ИЗ НИЗКОУГЛЕРОДИСТЫХ ФЕРРИТОПЕРЛИТНЫХ СТАЛЕЙ 2005
  • Рыбин Валерий Васильевич
  • Филимонов Герман Николаевич
  • Оленин Михаил Иванович
  • Быковский Николай Георгиевич
  • Щербинина Наталья Борисовна
  • Галяткин Сергей Николаевич
  • Воробьева Наталья Юрьевна
  • Подкорытов Роман Александрович
  • Скутин Виталий Сергеевич
  • Лазарева Татьяна Васильевна
  • Гусельникова Татьяна Михайловна
  • Галка Сергей Семенович
  • Кучеров Александр Илларионович
  • Евдокимова Надежда Степановна
  • Носов Юрий Юрьевич
  • Сурин Сергей Юрьевич
RU2299252C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ СОЕДИНЕНИЙ ИЗ НИЗКОУГЛЕРОДИСТЫХ ФЕРРИТО-ПЕРЛИТНЫХ СТАЛЕЙ 2014
  • Оленин Михаил Иванович
  • Горынин Владимир Игоревич
  • Бережко Борис Иванович
  • Галяткин Сергей Николаевич
  • Воробьева Наталья Юрьевна
  • Гусельникова Татьяна Михайловна
  • Мурашев Владимир Васильевич
RU2566241C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА 2012
  • Тетюева Тамара Викторовна
  • Иоффе Андрей Владиславович
  • Ревякин Виктор Анатольевич
  • Суворов Павел Вячеславович
  • Мовчан Михаил Александрович
  • Денисова Татьяна Владимировна
  • Чистопольцева Елена Александровна
RU2479637C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОГО ХЛАДОСТОЙКОГО СВАРИВАЕМОГО ЛИСТОВОГО ПРОКАТА ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ 2014
  • Попова Анна Александровна
  • Шеремет Наталия Павловна
  • Сафронова Наталья Николаевна
  • Новоселов Сергей Иванович
RU2569619C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОГО ТОЛСТОЛИСТОВОГО СТАЛЬНОГО ПРОКАТА НА РЕВЕРСИВНОМ СТАНЕ 2020
  • Митрофанов Артем Викторович
  • Барабошкин Кирилл Алексеевич
  • Киселев Даниил Александрович
  • Кузнецов Денис Валерьевич
  • Тихонов Сергей Михайлович
  • Серов Геннадий Владимирович
RU2745831C1
СПОСОБ ВОССТАНОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НИЗКОУГЛЕРОДИСТОЙ ПЕРЛИТНОЙ СТАЛИ ПОСЛЕ ЭКСПЛУАТАЦИИ 2013
  • Рогожкин Владимир Владимирович
  • Бычков Михаил Александрович
  • Жолобов Владимир Алексеевич
  • Горынин Владимир Игоревич
  • Оленин Михаил Иванович
  • Тимофеев Борис Тимофеевич
RU2559598C2
СПОСОБ ПРОИЗВОДСТВА ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА (ВАРИАНТЫ) 2004
  • Горынин И.В.
  • Семичева Т.Г.
  • Малахов Н.В.
  • Хлусова Е.И.
  • Высоцкий В.М.
  • Северинец И.Ю.
  • Голованов А.В.
  • Подтелков В.В.
  • Томин А.А.
  • Бойченко В.С.
  • Лесина О.А.
  • Арианов С.В.
  • Федоров С.В.
RU2265067C1

Реферат патента 2011 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОУГЛЕРОДИСТОЙ ФЕРРИТО-ПЕРЛИТНОЙ СТАЛИ

Изобретение относится к технологии термической обработки листового проката, предназначенного для изготовления деталей и узлов конструкций, работающих при низких температурах, например контейнеров для перевозки, и длительного хранения отработавшего ядерного топлива. Техническим результатом изобретения является повышение прочности и хладостойкости низкоуглеродистой феррито-перлитной стали. Для достижения технического результата осуществляют предварительную деформацию заготовки при температуре 1000-850°С с суммарным обжатием 65-75% и окончательную деформацию при температуре 750-700°С с обжатием за проход не менее 12% и суммарным обжатием не менее 60%, затем осуществляют закалку с прокатного нагрева со скоростью более 35°С/мин до 150±10°С и последующим охлаждением на воздухе, после закалки проводят высокий отпуск листа при температуре 600±10°С с выдержкой 4,0-6,0 мин/мм толщины, а после него проводят стабилизирующий отпуск при температуре 460+10°С с выдержкой 3-5 час с последующим охлаждением на воздухе. 2 табл.

Формула изобретения RU 2 427 653 C1

Способ термической обработки листового проката из низкоуглеродистой феррито-перлитной стали, включающий предварительную деформацию при температуре 1000-850°С с суммарным обжатием 65-75%, окончательную деформацию при температуре 750-700°С с обжатием за проход не менее 12% и суммарным обжатием не менее 60%, последующую закалку с прокатного нагрева со скоростью более 35°С/мин до температуры 150±10°С, затем - на воздухе, далее высокий отпуск с последующим охлаждением на воздухе, отличающийся тем, что высокий отпуск осуществляют при температуре 600±10°С с выдержкой 4,0-6,0 мин/мм толщины, после него проводят стабилизирующий отпуск при температуре 460+10°С с выдержкой 3-5 ч с последующим охлаждением на воздухе.

Документы, цитированные в отчете о поиске Патент 2011 года RU2427653C1

СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ ХЛАДОСТОЙКОЙ СТАЛИ 2006
  • Карзов Георгий Павлович
  • Бережко Борис Иванович
  • Стольный Виктор Иванович
  • Быковский Николай Георгиевич
  • Романов Олег Николаевич
  • Оленин Михаил Иванович
  • Голованов Александр Васильевич
  • Подтелков Владимир Владимирович
  • Середа Ирина Ричардовна
  • Лебедева Надежда Васильевна
RU2337976C2
СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СРЕДНЕСОРТОВОГО И КРУПНОСОРТОВОГО ПРОКАТА 1992
  • Пушин В.М.
  • Кузнецов Ю.В.
  • Абашева М.А.
  • Скрипченко В.А.
  • Сутормин А.Я.
  • Бредихин В.В.
  • Дудука В.А.
RU2044779C1
СПОСОБ ОБРАБОТКИ МЕТАЛЛОВ И СПЛАВОВ 2007
  • Коваленко Валентина Владимировна
  • Губинский Владимир Иосифович
  • Бровкин Владимир Леонидович
RU2355784C1
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВОЙ СТАЛИ, ОБЛАДАЮЩЕЙ АБРАЗИВНОЙ СТОЙКОСТЬЮ, И ПОЛУЧЕННЫЙ ЛИСТ 2003
  • Бегино Жан
  • Бриссон Жан-Жорж
RU2326180C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 2003
  • Брижан А.И.
  • Бодров Ю.В.
  • Грехов А.И.
  • Горожанин П.Ю.
  • Жукова С.Ю.
  • Мурзин В.Н.
  • Рыбинский Н.Ф.
  • Лефлер М.Н.
  • Пышминцев И.Ю.
  • Кривошеева Антонина Андреевна
  • Крылатков С.И.
RU2230802C1

RU 2 427 653 C1

Авторы

Оленин Михаил Иванович

Быковский Николай Георгиевич

Бережко Борис Иванович

Стольный Виктор Иванович

Михайлов-Смольняков Максим Сергеевич

Лебедева Надежда Васильевна

Сабреев Дмитрий Валерьевич

Даты

2011-08-27Публикация

2009-12-29Подача