Изобретение относится к технологии термической обработки поковок, предназначенных для изготовления деталей и узлов, работающих при низких температурах, например, контейнеров для перевозки отработавшего ядерного топлива.
Известны способы термической обработки поковок из сталей перлитного класса, позволяющие снизить в них внутренние напряжения и повысить вязкопластические свойства (Гуляев А.П. «Металловедение», М. изд-во «Металлургия», 1977 г., стр.275-281).
Известен способ термической обработки низкоуглеродистых сталей, состоящий из отжига или нормализации, который позволяет снизить внутренние напряжения и повысить хладостойкость.
Согласно известному способу поковки нагревают до температуры выше точки Ас3, выдерживают при этой температуре и медленно охлаждают с печью или на воздухе. Недостатком этого способа является выделение из аустенита в процессе охлаждения ферритоперлитной смеси с пластинчатой формой цементита и предвыделений третичного цементита, которые приводят к охрупчиванию стали при низкой температуре. (В.Г.Сорокин, А.В.Волосников и др. «Марочник сталей и сплавов», Москва, изд-во «Машиностроение», 1989 г.).
Наиболее близким по технической сущности и достигаемому эффекту является способ термической обработки низкоуглеродистых сталей, включающий закалку с температурой 840-870°С, охлаждение в воде, высокий отпуск при температуре 620-670°С с последующим охлаждением на воздухе до комнатной температуры. (Ю.П.Солнцев, Т.И.Титова, Книга «Стали для Севера и Сибири», Санкт-Петербург, Химиздат, 2002 г., стр.306-307).
Недостатком известного способа, как установлено исследованиями, является недостаточная хладостойкость низкоуглеродистых ферритоперлитных сталей за счет возникновения в них зон предвыделений третичного цементита при охлаждении после отпуска.
Техническим результатом изобретения является повышение хладостойкости низкоуглеродистых ферритоперлитных сталей.
Поставленный технический эффект достигается за счет того, что в способе термической обработки полуфабрикатов из низкоуглеродистых ферритоперлитных сталей, включающем закалку с температуры выше критической точки Ас3, последующий высокий отпуск в диапазоне температур 620-670°С, с охлаждением на воздухе, согласно изобретению, после высокого отпуска проводят дополнительный отпуск в диапазоне температур 400-450°С с выдержкой 3-3,5 ч с последующим охлаждением на воздухе.
Как установлено исследованиями, нагрев под закалку до температуры 930÷20°С вызван необходимостью растворения в аустените карбидов и нитридов ванадия и ниобия, повторный нагрев при отпуске до температуры 400-450°С необходим для коагуляции третичного цементита. Известно, что после закалки и высокого отпуска низкоуглеродистые ферритоперлитные стали приобретают сорбитную структуру, т.е. ферритоцементитную смесь, где цементит имеет округлую форму.
Однако высокий отпуск в диапазоне температур 620-670°С с охлаждением на воздухе приводит к образованию в стали участков с предвыделениями третичного цементита, что резко снижает хладостойкость стали. Вызвано это тем, что предвыделения третичного цементита имеют параметры решетки, отличные от матрицы, и в последней создают растянуто-сжатые области, что приводит к возникновению напряжений 2 рода, которые снижают хладостойкость стали.
В процессе проведенных исследований с помощью программы Image Expert Professional проведен количественный анализ структурно-фазового состояния исследуемых сталей, количественное определение относительной доли структурных составляющих и определение количественного содержания фаз, входящих в состав исследуемого образца, было установлено, что выделение третичного цементита происходит после дополнительного отпуска при температуре 350°С, а коагуляция его происходит при температуре 400-450°С (таблица 2).
Время выдержки при температуре 400-450°С, равное 3-3,5 ч, необходимо и достаточно для завершения процесса коагуляции третичного цементита.
Установлено также, что при температуре отпуска 350°С происходит охрупчивание стали из-за предвыделений и мелких включений третичного цементита.
Повышение температуры выше 450°С приводит к растворению третичного цементита и при последующем охлаждении - к образованию его предвыделений, а снижение температуры ниже 400°С сразу приводит к образованию предвыделений и мелких цементитных включений и, как следствие, в одном и другом случае имеет место охрупчивание стали.
Пример выполнения заявленного способа.
На металлургическом заводе ОАО «ОМЗ-Спецсталь» была выплавлена низкоуглеродистая ферритоперлитная сталь марки 09Г2СА-А, химический состав которой приведен в таблице 1.
стали
Из этой стали была изготовлена крупногабаритная поковка размером ⌀1000×900 мм. Из поковки были вырезаны заготовки размером 20×20×60 мм, которые были подвергнуты закалке с температуры 930÷20°С в воде и высокому отпуску при температуре 620, 670 и 650°С с выдержкой в течение 2,5 ч с последующим охлаждением на воздухе.
Затем заготовки после основной термической обработки подвергли дополнительному отпуску при температуре 350, 400, 450 и 500°С с выдержкой 3,0 и 3,5 ч.
Из этих заготовок были изготовлены ударные образцы «Шарпи» с острым надрезом и испытаны при температуре -60°С по ГОСТ 9454. Результаты испытаний представлены в таблице 2.
Как видно из полученных результатов образцы, обработанные по предлагаемому способу, имеют более высокие значения хладостойкости по сравнению с образцами, термообработанные по известному способу.
Ожидаемый технико-экономический эффект по сравнению с прототипом выразится в возможности создания новых изделий специальной техники повышенной надежности и долговечности из экономнолегированной низкоуглеродистой ферритоперлитной стали за счет повышения ее хладостойкости.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОУГЛЕРОДИСТОЙ ФЕРРИТО-ПЕРЛИТНОЙ СТАЛИ | 2009 |
|
RU2414517C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ СОЕДИНЕНИЙ ИЗ НИЗКОУГЛЕРОДИСТЫХ ФЕРРИТОПЕРЛИТНЫХ СТАЛЕЙ | 2005 |
|
RU2299252C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОУГЛЕРОДИСТОЙ ФЕРРИТО-ПЕРЛИТНОЙ СТАЛИ | 2009 |
|
RU2427653C1 |
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ ХЛАДОСТОЙКОЙ СТАЛИ | 2009 |
|
RU2394108C1 |
СПОСОБ ПРОИЗВОДСТВА ПОКОВОК ИЗ НИЗКОУГЛЕРОДИСТЫХ ФЕРРИТО-ПЕРЛИТНЫХ СТАЛЕЙ | 2009 |
|
RU2415183C1 |
Способ термической обработки поковок из низколегированной стали | 2021 |
|
RU2770925C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА | 2013 |
|
RU2543585C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ СОЕДИНЕНИЙ ИЗ НИЗКОУГЛЕРОДИСТЫХ ФЕРРИТО-ПЕРЛИТНЫХ СТАЛЕЙ | 2014 |
|
RU2566241C1 |
Способ термодиффузионного цинкования крепежных деталей из сталей бейнитного класса с одновременным повышением их хладостойкости | 2015 |
|
RU2607505C1 |
Способ термической обработки литых сталей | 2015 |
|
RU2617185C2 |
Изобретение относится к технологии термической обработки поковок, предназначенных для изготовления деталей и узлов, работающих при низких температурах, например, контейнеров для перевозки и длительного хранения (более 50 лет) отработавшего ядерного топлива. Техническим результатом изобретения является повышение хладостойкости низкоуглеродистых сталей. Поставленный технический результат достигается за счет того, что полуфабрикат подвергают закалке с температуры выше критической точки Ас3, высокому отпуску в диапазоне температур 620-670°С с охлаждением на воздухе и дополнительному отпуску в диапазоне температур 400-450°С с выдержкой 3-3,5 ч с последующим охлаждением на воздухе. 2 табл.
Способ термической обработки полуфабрикатов из низкоуглеродистых ферритоперлитных сталей, включающий закалку с температуры выше критической точки Ас3, последующий высокий отпуск в диапазоне температур 620-670°С с охлаждением на воздухе, отличающийся тем, что после высокого отпуска проводят дополнительный отпуск в диапазоне температур 400-450°С с выдержкой 3-3,5 ч с последующим охлаждением на воздухе.
СОЛНЦЕВ Ю.П | |||
и др | |||
Стали для Севера и Сибири | |||
- СПб.: Химиздат, 2002, с.306-307 | |||
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ СОЕДИНЕНИЙ ИЗ НИЗКОУГЛЕРОДИСТЫХ ФЕРРИТОПЕРЛИТНЫХ СТАЛЕЙ | 2005 |
|
RU2299252C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОКОВОК ШАТУНА ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ | 1997 |
|
RU2113509C1 |
СПОСОБ УЛУЧШАЮЩЕЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛИ | 1998 |
|
RU2131932C1 |
Способ термической обработки низкоуглеродистых медистых сталей | 1977 |
|
SU703582A1 |
БАШНИН Ю.А | |||
и др | |||
Термическая обработка крупногабаритных изделий и полуфабрикатов на металлургических заводах | |||
- М.: Металлургия, 1985, с.153. |
Авторы
Даты
2009-11-20—Публикация
2008-07-22—Подача