СПОСОБ ИЗГОТОВЛЕНИЯ АНОДА СРЕДНЕТЕМПЕРАТУРНОГО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПРОИЗВОДСТВА ФТОРА Российский патент 2011 года по МПК C25C7/02 C25B9/00 

Описание патента на изобретение RU2431701C1

Изобретение относится к способам изготовления угольных анодов, используемых в среднетемпературных электролизерах для производства фтора.

В среднетемпературных электролизерах для производства фтора используют угольные аноды. Угольные аноды изготавливают из специальных углей, например, из термоантрацита или нефтяного кокса. Угольные аноды обладают большой пористостью. В промышленности используют, преимущественно, аноды в виде пластин, анододержатель (токоподвод) ввинчивают в угольную пластину либо скрепляют с ней при помощи болтов; токоподводами служат, например, медные стержни (Галкин Н.П., Крутиков А.В. Технология фтора. - М.: Атомиздат, 1968 г., с.90-92). Угольные пластины обладают недостаточной электропроводностью, высокое контактное сопротивление на стыке медного токоподводящего стержня с угольным электродным материалом приводит к снижению токовых нагрузок, воспринимаемых анодами, что, в свою очередь, ведет к повышению напряжения между электродами в процессе электролиза.

Известен способ изготовления угольного анода, содержащего медь, применяемого в среднетемпературных электролизерах для получения фтора (CN 101319331, опубл. 10.12.2008, МПК С25В 1/24, 11/12, 1/00, 11/00), обладающего повышенной прочностью и пониженным удельным электрическим сопротивлением. Согласно способу медь вводят на стадии подготовки угольного материала, из которого будут формовать аноды: угольный материал обжигают, дробят и измельчают, затем в измельченный уголь добавляют медный порошок и расплав связующего вещества, ингредиенты смешивают и из полученной массы формуют аноды путем прокатки (вальцевания). Этот способ выбран за прототип.

Задачей изобретения является расширение арсенала способов изготовления анодов фторных электролизеров, обладающих повышенной проводимостью; разработка способа изготовления анодов из готовых, выпускаемых промышленностью, угольных пластин.

Поставленную задачу решают тем, что в способе изготовления анода среднетемпературного электролизера для производства фтора с использованием угольной электродной пластины и ввинченных в нее токоподводов, включающем операцию введения меди, в пористой угольной пластине выполняют глухие отверстия, через которые в поры пластины нагнетают суспензию, содержащую медный порошок и расплав смеси эпоксидной смолы с малеиновым ангидридом, в количестве, обеспечивающем введение в пластину медного порошка 0,29-0,38% от массы пластины, а после полимеризации эпоксидной смолы, введенной в пластину в составе суспензии, в упомянутых глухих отверстиях пластины нарезают резьбу для ввинчивания токоподводов.

Суспензию нагнетают при температуре суспензии и пластины 120÷130°С. Суспензию нагнетают под давлением не ниже 0,7 МПа.

Массовое соотношение эпоксидной смолы и малеинового ангидрида в смеси составляет (4÷5):1.

Электропроводящая композиция в виде суспензии медного порошка в смеси эпоксидной смолы и малеинового ангидрида, при нагнетании ее вглубь объема пористой углеродной пластины через отверстия для токоподводов, заполняет поры пластины. Медный порошок повышает электропроводность пластины.

Медный порошок в области пластины, прилегающей к отверстиям для токоподводов и контактирующей с токоподводом, снижает контактное сопротивление на стыке токоподвода с анодной пластиной, что также повышает электропроводность анодов.

Нарезание резьбы в угольных анодных пластинах после введения в них меди в заявляемых количествах ведет к увеличению электропроводности анода, изготовленного из такой пластины, т.к. способствует надежному электрическому контакту пластины с ввинчиваемым токоподводом (после пропитки пластина становится прочнее, тверже, поэтому качество резьбы повышается, контакт пластины и токоподвода улучшается).

При введении меди сверх заявляемого количества повышенная механическая прочность (жесткость) пластины уже затрудняет нарезание резьбы, появляющиеся при нарезании резьбы сколы и неровности ведут в ухудшению контакта «токоподвод-пластина» и, как следствие, к снижению электропроводности анода.

Способ осуществляют следующим образом.

Используют угольные пластины, выпускаемые промышленностью. Угольные пластины-заготовки для анода имеют размеры, мм: 650×285×70 (ТУ 48-12-34-95 Пластины коксовые обожженные, ОАО «Челябинский электродный завод»).

Пластины изготовлены из прессованного кокса, имеют пористость 12÷25%, размер пор, мкм: 4,8÷37, масса пластины 24 кг.

В пластине, через ее торец, выполняют (высверливают) глухие длинномерные (протяженные) отверстия (каналы) симметрично ее оси, глубиной 465 мм, предназначенные в конечном итоге для нарезания резьбы под ввинчиваемые токоподводящие стержни (токоподводы).

Готовят суспензию, содержащую смесь эпоксидной смолы ЭД-20, ГОСТ 1058-84, с малеиновым ангидридом квалификации «ч» и высокодисперсный медный порошок. Медный порошок изготовлен восстановлением гидразином оксида меди, полученного плазмохимическим путем. Медный порошок чистотой 99,90% имеет следующий гранулометрический состав: частицы размером 3,0 мкм и менее - 30%, от 3,0 до 20,0 мкм - 65%, 20,0 мкм и более - 5%. В опытах 1-5 к порошку меди в количестве 60, 70, 90, 100, 110 г добавляют до заданного объема (600 см3) расплав смеси эпоксидной смолы с малеиновым ангидридом, массовое соотношение эпоксидной смолы и малеинового ангидрида в смеси (4÷5):1. Ингредиенты перемешивают при температуре 120÷130°С до образования однородной суспензии.

Суспензию, нагретую до 120÷130°С, нагнетают в поры пластины, нагретой до этой же температуры 120÷130°С, под давлением не ниже 0,7 МПа, через глухие отверстия, выполненные в пластинах для токоподводов, следующим образом.

Пластину устанавливают вертикально, при этом глухие отверстия, выполненные в пластинах для токоподводов, также расположены вертикально. Суспензию подают из напорной емкости по трубкам, заканчивающимся штуцерами, герметично закрепленными в отверстиях пластины и уплотненными. Суспензия поступает в отверстия снизу. Давление нагнетания поддерживают газообразным азотом, подаваемым внутрь емкости в пространство над слоем суспензии. Из глухих отверстий суспензия поступает в поры пластины.

Нагнетание суспензии в заданном объеме проводят в течение 3÷5 мин, на поверхности пластины появляются влажные пятна эпоксидной смолы, продиффундировавшей к поверхности через сквозные поры пластины. По окончании пропитки анодные пластины выдерживают при температуре 130-150°С в течение времени, необходимого для отверждения (полимеризации) эпоксидной смолы, около суток. В опытах 1-5 пластины содержат меди соответственно 0,25; 0,29; 0,38; 0,42; 0,46% от массы пластины. Затем, после отверждения эпоксидной смолы, в отверстиях нарезают резьбу и ввинчивают в них медные токоподводящие стержни.

В опыте 6 пластину пропитывали таким же образом, как и в примерах 1-5, только в расплав смеси эпоксидной смолы и малеинового ангидрида не добавляли медный порошок.

При нарезании резьбы регистрировали мощность, потребляемую устройством для нарезания резьбы, по величине которой можно судить о механической прочности пластин.

Аноды, изготовленные из пластин, пропитанных суспензией, с закрепленными в них медными токоподводами испытывали на проводимость электрического тока. Измеряли электрический ток, проходящий через аноды при одном и том же подаваемом напряжении (измеряли воспринимаемую токовую нагрузку, т.е. предельную величину пропускаемого от токоподвода к поверхности пластины электрического тока при непосредственном подключении анодов к источнику питания). В зависимости от количества введенной меди был зафиксирован ток разной величины.

Результаты опытов представлены в таблице.

Таблица Содержание меди в пластине, % Электрический ток, А Мощность, потребляемая при нарезании резьбы, кВт 1 0,25 820 0,73 2 0,29 950 0,75 3 0,38 900 0,79 4 0,42 850 0,88 5* 0,46 760 1,16 6 0 800 0,70 * - зафиксированы сколы и трещины при нарезании резьбы.

При заявляемых параметрах (опыты 2, 3) ток составляет 900-950 А, в то время как при меньшем или большем количестве введенной меди, а также при отсутствии меди, зафиксирован ток меньшей величины, от 760 до 850 А (опыты 1, 4, 5, 6). В опытах 4 и 5, особенно в опыте 5, излишнее количество введенной меди увеличило прочность пластин настолько, что привело к затруднениям при нарезке резьбы и ухудшению ее качества, что уменьшило электропроводность анодов.

Способ повышает электропроводность анодов, способствует уменьшению напряжения электролиза.

Похожие патенты RU2431701C1

название год авторы номер документа
Устройство токоподвода к электроду для электролитического получения окислителей перекисного типа 2018
  • Потапова Галина Филипповна
  • Мантузов Антон Викторович
  • Воронцов Павел Сергеевич
RU2711425C2
СПОСОБ ПОЛУЧЕНИЯ ФТОРА 2000
  • Зусайлов Ю.Н.
RU2198962C2
ЭЛЕКТРОЛИЗЕР ДЛЯ ПРОМЫШЛЕННОГО ПОЛУЧЕНИЯ ФТОРА 1994
  • Варфоломеев Л.И.
  • Турнаев М.И.
  • Охотников Ю.Ф.
  • Комаров В.Н.
  • Сапожников М.В.
  • Струшляк А.И.
  • Юрочкин В.М.
  • Подберезный Б.Ф.
  • Порошин Н.Ф.
  • Львов В.А.
  • Рабинович Р.Л.
RU2081944C1
СПОСОБ И УСТРОЙСТВО РАФИНИРОВАНИЯ АЛЮМИНИЯ 2013
  • Попов Юрий Николаевич
  • Поляков Петр Васильевич
RU2558316C2
АНОД ФТОРНОГО СРЕДНЕТЕМПЕРАТУРНОГО ЭЛЕКТРОЛИЗЕРА 1996
  • Зусайлов Ю.Н.
RU2118995C1
ЭЛЕКТРОЛИЗЕР ДЛЯ ПРОМЫШЛЕННОГО ПОЛУЧЕНИЯ ФТОРА 2008
  • Кузьминых Сергей Анатольевич
  • Галата Андрей Александрович
  • Комиссаров Александр Александрович
  • Мурлышев Артем Петрович
  • Столбов Владимир Павлович
RU2381300C2
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЛИТИЧЕСКИХ ПОРОШКОВ МЕТАЛЛОВ 2013
  • Бусько Владимир Иосифович
  • Жуликов Владимир Владимирович
RU2534181C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОНТАКТНОЙ ВСТАВКИ ТОКОСЪЕМНИКА ЭЛЕКТРОТРАНСПОРТНОГО СРЕДСТВА 2001
  • Васильев Ю.Н.
RU2207962C1
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА НЕОДИМ-ЖЕЛЕЗО И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Лысенко Андрей Павлович
  • Тарасов Вадим Петрович
  • Наливайко Антон Юрьевич
RU2603408C2
СПОСОБ НАНЕСЕНИЯ КОМПОЗИЦИОННЫХ ХРОМОВЫХ ПОКРЫТИЙ 2014
  • Баранов Анатолий Никитич
  • Янюшкин Александр Сергеевич
  • Янченко Наталья Ивановна
  • Тимкина Екатерина Викторовна
  • Рычков Даниил Александрович
RU2576797C1

Реферат патента 2011 года СПОСОБ ИЗГОТОВЛЕНИЯ АНОДА СРЕДНЕТЕМПЕРАТУРНОГО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПРОИЗВОДСТВА ФТОРА

Изобретение относится к способам изготовления угольных анодов, используемых в среднетемпературных электролизерах для производства фтора. Способ включает выполнение в пористой угольной пластине глухих отверстий, через которые в поры пластины нагнетают суспензию, содержащую медный порошок и расплав смеси эпоксидной смолы с малеиновым ангидридом в количестве, обеспечивающем введение в пластину медного порошка 0,29÷0,38% от массы пластины и нарезание резьбы для ввинчивания токоподводов в упомянутых глухих отверстиях пластины после полимеризации эпоксидной смолы, введенной в пластину в составе суспензии. Обеспечивается повышение электропроводности анодов, уменьшение напряжения электролиза. 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 431 701 C1

1. Способ изготовления анода среднетемпературного электролизера для производства фтора с использованием угольной электродной пластины и ввинченных в нее токоподводов, включающий операцию введения меди, отличающийся тем, что в пористой угольной пластине выполняют глухие отверстия, через которые в поры пластины нагнетают суспензию, содержащую медный порошок и расплав смеси эпоксидной смолы с малеиновым ангидридом, в количестве, обеспечивающем введение в пластину медного порошка 0,29÷0,38% от массы пластины, а после полимеризации эпоксидной смолы, введенной в пластину в составе суспензии, в упомянутых глухих отверстиях пластины нарезают резьбу для ввинчивания токоподводов.

2. Способ по п.1, отличающийся тем, что суспензию нагнетают при температуре суспензии и пластины 120÷130°С.

3. Способ по п.1, отличающийся тем, что суспензию нагнетают под давлением не ниже 0,7 МПа.

4. Способ по п.1, отличающийся тем, что массовое соотношение эпоксидной смолы и малеинового ангидрида в смеси составляет (4÷5):1.

Документы, цитированные в отчете о поиске Патент 2011 года RU2431701C1

CN 101319331 A, 10.12.2008
CN 101319330 A, 10.12.2008
Углеродный анод для фторного электролизера 1973
  • Рысс Марк Абрамович
  • Дмитриева Галина Владиславовна
  • Апалькова Галина Давлетхановна
  • Пигасов Степан Евгеньевич
  • Уваров Анатолий Владимирович
  • Новокшенов Виктор Федрович
SU495084A1
АНОДНЫЙ ЭЛЕКТРОД ДЛЯ ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ ФТОРА 1992
  • Джеральд Л.Бауэр
  • Чарльз Ф.Колпин
  • Вилльям В.Чилдс
  • Дин Т.Раттен
RU2114216C1
ЭЛЕКТРОЛИЗЕР ДЛЯ ПРОМЫШЛЕННОГО ПОЛУЧЕНИЯ ФТОРА 1994
  • Варфоломеев Л.И.
  • Турнаев М.И.
  • Охотников Ю.Ф.
  • Комаров В.Н.
  • Сапожников М.В.
  • Струшляк А.И.
  • Юрочкин В.М.
  • Подберезный Б.Ф.
  • Порошин Н.Ф.
  • Львов В.А.
  • Рабинович Р.Л.
RU2081944C1

RU 2 431 701 C1

Авторы

Соловьев Александр Иванович

Андриец Сергей Петрович

Галата Андрей Александрович

Лазарчук Валерий Владимирович

Мочалов Юрий Серафимович

Мурлышев Артем Петрович

Степанов Игорь Анатольевич

Даты

2011-10-20Публикация

2010-02-12Подача