СПОСОБ ПОЛУЧЕНИЯ НА ПОВЕРХНОСТИ ЛЕНТЫ-ФОЛЬГИ ИЗ НИОБИЙ-ТИТАНОВОГО СПЛАВА ИЗОЛИРУЮЩЕГО ОКСИДНОГО ПОКРЫТИЯ Российский патент 2012 года по МПК H01L39/24 

Описание патента на изобретение RU2439750C1

Изобретение относится к области криогенной техники. Оно предусматривает изготовление сверхпроводников для ослабления магнитных и электромагнитных полей, а также для получения магнитного вакуума. Кроме того, изобретение относится к гальванотехнике, в частности к способам создания изоляции типа анодных окисных плёнок (АОП) на металлах, и может найти применение, например, в технологии изготовления малогабаритных высоковольтных сверхпроводящих выключателей (СПВ).

Для этого необходимо, чтобы изоляция обеспечивала высокие значения напряжения на СПВ, устраняла попадание жидкого гелия на металл, при переходе в нормальное состояние которого происходит взрывоопасное испарение гелия, вызывающее разрушение изоляции. Создание СПВ на сплавах ниобий-титан по доступным нам источникам не проводилось. Получение такой изоляции с удовлетворительными качественными характеристиками для сверхпроводящего сплава может упростить технологию изготовления и конструкцию СПВ. Известные конструкции СПВ имеют следующие недостатки: не выдерживают высоких напряжений из-за отсутствия подходящих материалов и имеют ограниченный ресурс срабатывания (см. Труды конференции по техническому использованию сверхпроводимости. М.: Атомиздат, 1977, т.2, с.10-13). Поэтому от изоляции СПВ зависят не только габариты и срок эксплуатации СПВ, но и коммутационные характеристики ключа.

В настоящее время в СПВ может быть эффективно использован в основном сплав ниобий-титан в виде фольги, сложенный в безындуктивный пакет. Основной задачей для такой конструкции СПВ является выбор и создание изоляции с высокой электрической прочностью и обеспечение механического сцепления между слоями пакета. Применяемые изоляционные материалы - стеклоткани не обеспечивают необходимой электрической прочности и изоляции от попадания жидкого гелия на обмотку СПВ, но позволяют получать хорошую механическую связь слоев. Одним из вариантов изоляции СПВ может быть комбинация стеклотканей с АОП на ниобий-титановых сверхпроводниках, что позволит уменьшить межслоевую изоляцию и габариты СПВ, устранить локальные разрушения.

Известен способ электрохимической обработки сверхпроводящего ниобия или сверхпроводящего титана, включающий обработку металла в кислотных или аммиачных растворах при пропускании постоянного тока или поддержании постоянного напряжения на электродах ванны до формирования на поверхности металла АОП. Электрофизические свойства АОП зависят от материала обработки, состава и концентрации электролита и режима питания на электродах ванны. Для сверхпроводящего ниобия используется раствор серной кислоты в воде или водный раствор аммиака. Для титана и его сплавов известно применение щавелевой кислоты (см. 1. Диденко А.Н. и др. Сверхпроводящие СВЧ-структуры. М.: Энергоатомиздат, 1981, с.141-150; 2. Юнг Л. Анодные окисные пленки. Л.: Энергия, 1967, с.174-178, 210-211; 3. Справочник по электрохимии. Л.: Химия, 1981, с.320-321).

Недостатком способа являются невысокие электрические и пластические свойства получаемых АОП. Улучшить их качество позволяет изменение режима электропитания на электродах ванны.

Известен способ электрохимической обработки ниобия и титана, включающий обработку металла в кислотном электролите на переменном токе промышленной частоты, в частности в водном растворе фосфорной или винной кислот (см. Байрачный Б.И. и др. Электрохимическое оксидирование объемно-пористого ниобия переменным током. - Журнал прикладной химии, 1977. т. 50, в. 1. с.199-220; Байрачный Б.И. и др. Анодные процессы на титане и ниобии. - Сб. тезисов IV Украинской респ. Конф. по электрохимии. - Киев, Наукова думка, 1984, с.12).

Образование АОП на ниобии и титане в режиме переменного тока происходит за счет проявления вентильных свойств этих металлов в электрохимической ванне, что позволяет улучшить механические свойства АОП, по сравнению с пленками, полученными в режиме постоянного тока.

Данный способ также имеет недостатки, в частности, не позволяет получить АОП с высокой электрической прочностью, большей, чем при обработке в режиме постоянного тока.

Известен способ электрохимической обработки ниобия и титана (В.А.Николаев и др. Влияние асимметрии переменного тока на качество защитных пленок на титане. - Журнал прикладной химии, 1978, т.51, в.3, с.604-606). Данный способ включает обработку титана в 0,5 н. растворе соляной кислоты на переменном асимметричном токе при отношении анодной амплитуды к катодной в диапазоне 1,5-4.

Обработка на переменном асимметричном токе позволяет добиться таких свойств АОП, которые невозможно получить при других режимах электропитания, например, шероховатость 10-11 класса.

Способ также имеет недостатки, в частности не позволяет получить АОП с высокой пластичностью к обрабатываемой поверхности.

В качестве прототипа выбраны известные способ и устройство изготовления сверхпроводника для экранирования магнитных полей (см. заявка RU №94018163 A1, MПK H01L 39/00 от 17.05.1994, опубл. 27.06.1996). Согласно способу на нормальный слой экранирующего сверхпроводника электролизом наносят сверхпроводящий слой на основе ниобия в атмосфере инертного газа. Оно предусматривает изготовление сверхповодников для ослабления магнитных и электромагнитных полей, а также для получения магнитного вакуума. В основе его лежат эффект Мейсснера-Оксенфельда и закон сохранения магнитного потока в двусвязных сверхпроводниках. При этом нормальный слой экранирующего сверхпроводника, на который электролизом наносят сверхпроводящий слой на основе ниобия в атмосфере инертного газа, выполняют в виде полой сферы с толщиной, составляющей 0,03-0,20 ее диаметра, сверхпроводящему слою сообщают изотропность относительно силы пиннинга. В качестве материала полой сферы используют медь, молибден, графит, стеклоуглерод. Изотропность сверхпроводящего слоя относительно силы пиннинга может быть достигнута нанесением слоя за два и более циклов электролиза, в промежутках между которыми сверхпроводник извлекают из электролита; проведением электролиза в атмосфере гелия и аргона с механической обкаткой сверхпроводника; проведением электролиза в атмосфере смеси аргона и азота. В качестве сверхпроводящих материалов могут быть использованы Nb, Nb3Sn и NbCx (х=0,97-0,99). Достигаемый технический результат заключается в обеспечении высокой степени ослабления магнитного поля независимо от направления его воздействия, повышении экранируемого объема при минимальном расходе материала сверхпроводника, упрощении процесса изготовления сверхпроводника. Изобретение также решает задачу изготовления экранов для получения магнитного вакуума. Однако повысить электрическую прочность пленки АОП и достигнуть величины напряжения выше 300 В этим способом невозможно.

Технической задачей, для решения которой предлагается настоящее изобретение, является улучшение электрической прочности АОП на сверхпроводящих сплавах титана и улучшение пластичности АОП.

Для достижения этого технического результата ленту-фольгу из ниобий-титанового сплава обрабатывают в 30-40% водном растворе смеси серной и соляной кислоты в соотношении 1:1 переменным асимметричным током промышленной частоты при плотности тока 6-8 А/дм2 с отношением амплитуды анодного тока к катодному в диапазоне 7-11 при равной длительности полупериодов и напряжении формовки анодных окисных пленок 400 В с осуществлением протяжки ленты-фольги через электролит с ограничением времени обработки в растворе до 2 минут.

На фиг.1 приведена зависимость максимально достигнутого напряжения в процессах оксидирования ниобий-титанового сплава на переменном асимметричном токе при разных концентрациях смеси серной и соляной кислот в воде. Существенными отличиями предложенного способа от известных являются выбор состава и концентрации электролита, ограничение времени обработки сплава ниобий-титан, которые в сочетании с известными параметрами плотности тока и асимметрии позволяет получить электрическую прочность АОП на сверхпроводящих сплавах ниобий-титан примерно в 5 раз выше, чем в известных способах. Кроме того, предложенный способ позволяет получить изоляцию с хорошей пластичностью для изготовления сложной конфигурации обмоток СПВ, что практически не достижимо известными способами электрохимической обработки.

Пример реализации способа. Изобретение поясняется на примере осуществления способа электрохимической обработки ниобий-титановой ленты-фольги толщиной 18 мкм, шириной 30 мм, длиной до 120 м. В водном растворе смеси серной и соляной кислот (1:1) с концентрацией 30÷40%. Процесс обработки проводился следующим образом (см. фиг.2): ниобий-титановая лента-фольга 2 помещалась в электролитическую ванну 1, выполненную из технической меди. После включения регулятора напряжения 3 в сеть устанавливался ток 4÷5 А (при площади ленты-фольги обрабатываемой в растворе 0,5 дм2 плотность тока составляла 6,2÷7,7 А/дм2 и отношении амплитуд анодного тока к катодному в диапазоне 7÷11) и поддерживался до установления напряжения ±400 В (амплитудное значение) на клеммах 4. Перед началом работы рекомендуется подогреть электролит до +65°С, чтобы обеспечить равномерную глубину оксидирования. Указанная температура представляет температуру, устанавливающуюся в ходе процесса протягивания ленты-фольги, и может изменяться в ходе процесса протягивания ленты-фольги в зависимости от объема электролита. После достижения на электродах ванны напряжения 400 В включался механизм протягивания ленты-фольги через электролит со скоростью 5-10 см/мин таким образом, чтобы обрабатываемый участок находился в растворе не более 2 мин. Скорость регулировалась двигателем с редуктором и валом намотки ленты-фольги. Ванна 5 служила для промывки ленты-фольги в проточной воде после оксидирования.

Проверка электрической прочности АОП проводилась на высоковольтной установке. Лента-фольга помещалась между шаровыми электродами, на которые подавалось высокое напряжение. Пробой регистрировался по величине устанавливаемого напряжения на вольтметре типа В7-10.

Предложенный способ позволяет получить АОП, выдерживающие 1500 В, что в 5 раза выше максимально достигнутого напряжения на таких металлах, как ниобий и титан. Другим положительным качеством АОП является хорошая пластичность. При изгибе ленты-фольги АОП остается целой, без трещин.

Похожие патенты RU2439750C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ИЗ АРМИРОВАННОГО ДИОКСИДА СВИНЦА 2019
  • Тураев Дмитрий Юрьевич
RU2691967C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА МЕТАЛЛАХ С УНИПОЛЯРНОЙ ПРОВОДИМОСТЬЮ 1993
  • Федоров В.А.
RU2110623C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ 2008
  • Беспалова Жанна Ивановна
  • Смирницкая Инна Викторовна
  • Фесенко Вячеслав Григорьевич
  • Кудрявцев Юрий Дмитриевич
RU2385969C1
Способ обработки титана и его сплавов с целью повышения его коррозионной стойкости и электролит для микродугового оксидирования титана и его сплавов с целью повышения коррозионной стойкости 2021
  • Герасимов Михаил Владимирович
  • Богдашкина Наталия Леонидовна
RU2756672C1
СПОСОБ ПОЛУЧЕНИЯ ОКРАШЕННЫХ ПОКРЫТИЙ НА ВЕНТИЛЬНЫХ МЕТАЛЛАХ И СПЛАВАХ 1993
  • Яровая Т.П.
  • Руднев В.С.
  • Гордиенко П.С.
  • Недозоров П.М.
RU2066716C1
Способ обработки титана и его сплавов 2023
  • Дресвянников Александр Федорович
  • Ахметова Анна Николаевна
RU2813428C1
Способ получения электрохимического оксидноанодного алмазосодержащего покрытия алюминия и его сплавов 2016
  • Буркат Галина Константиновна
  • Сафронова Ирина Викторовна
  • Александрова Галина Семеновна
  • Долматов Валерий Юрьевич
  • Руденко Дмитрий Владимирович
RU2631374C2
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ НА АЛЮМИНИИ И ЕГО СПЛАВАХ 2000
  • Лунг Бернгард
  • Буркат Г.К.
  • Долматов В.Ю.
RU2169800C1
СПОСОБ ФОРМИРОВАНИЯ БАРЬЕРНОГО ПОКРЫТИЯ НА ПАЯНЫХ АЛЮМИНИЕВЫХ ЭЛЕКТРОДАХ ГЕНЕРАТОРА ОЗОНА 2016
  • Крамаренко Александр Евгеньевич
  • Крамаренко Евгений Иванович
  • Горбатский Юрий Васильевич
  • Сторчай Евгений Иванович
  • Смородин Анатолий Иванович
RU2640586C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОРРОЗИОННОСТОЙКОГО ЭЛЕКТРОДА 2013
  • Ермаков Александр Владимирович
  • Студенок Елена Сергеевна
  • Игумнов Михаил Степанович
  • Никифоров Сергей Владимирович
  • Терентьев Егор Виленович
RU2533387C1

Иллюстрации к изобретению RU 2 439 750 C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ НА ПОВЕРХНОСТИ ЛЕНТЫ-ФОЛЬГИ ИЗ НИОБИЙ-ТИТАНОВОГО СПЛАВА ИЗОЛИРУЮЩЕГО ОКСИДНОГО ПОКРЫТИЯ

Изобретение относится к криогенной технике. Сущность изобретения: способ получения на поверхности ленты-фольги из ниобий-титанового сплава изолирующего оксидного покрытия включает обработку ленты-фольги на переменном асимметричном токе промышленной частоты в 30-40% водном растворе смеси серной и соляной кислоты в соотношении 1:1 при плотности тока 6-8 А/дм2 с отношением амплитуды анодного тока к катодному в диапазоне 7-11 при равной длительности полупериодов и напряжении формовки анодных оксидных пленок 400 В с осуществлением протяжки ленты-фольги через электролит с ограничением времени обработки в растворе до 2 минут. Способ позволяет улучшить электрическую прочность и пластичность анодных окисных пленок на сверхпроводящих сплавах титана. 2 ил.

Формула изобретения RU 2 439 750 C1

Способ получения на поверхности ленты-фольги из ниобий-титанового сплава изолирующего оксидного покрытия, включающий электрохимическую обработку ленты-фольги, отличающийся тем, что ленту-фольгу из ниобий-титанового сплава обрабатывают в 30-40%-ном водном растворе смеси серной и соляной кислоты в соотношении 1:1 переменным асимметричным током промышленной частоты при плотности тока 6-8 А/дм2 с отношением амплитуды анодного тока к катодному в диапазоне 7-11 при равной длительности полупериодов и напряжении формовки анодных окисных пленок 400 В с осуществлением протяжки ленты-фольги через электролит с ограничением времени обработки в растворе до 2 мин.

Документы, цитированные в отчете о поиске Патент 2012 года RU2439750C1

Николаев В.А
и др
Влияние асимметрии переменного тока на качество защитных пленок на титане
Журнал прикладной химии, 1978, т.51, в.3, с.604-606
Способ получения оксидного покрытия на ниобиевых электродах для электрохромного индикаторного устройства 1986
  • Косевич Вадим Маркович
  • Сокол Анатолий Афанасьевич
  • Малюк Юрий Иванович
  • Скатков Леонид Ильич
SU1379345A1
Способ получения оксидной пленки на ниобиевых электродах электрохромного индикаторного устройства 1983
  • Косевич Вадим Маркович
  • Сокол Анатолий Афанасьевич
  • Малюк Юрий Иванович
  • Дьяконенко Юрий Павлович
SU1227718A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
US 6984370 B2, 10.01.2006
GB 989800 А, 22.04.1965.

RU 2 439 750 C1

Авторы

Образцов Сергей Викторович

Ивлеева Айгуль Муратовна

Орлов Алексей Алексеевич

Исмагулова Айгуль Джамаловна

Даты

2012-01-10Публикация

2010-07-01Подача