СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ КОНСТРУКЦИОННОЙ СТАЛИ ИОНАМИ МЕДИ И СВИНЦА Российский патент 2012 года по МПК C23C14/48 

Описание патента на изобретение RU2442843C1

Изобретение относится к области машиностроения, а точнее к способам ионной имплантации поверхности деталей из конструкционных сталей типа 30ХГСН2А для повышения износостойкости.

Известен способ, при котором поверхность обрабатываемой детали имплантируют ионами свинца (Гусева М.И. Ионная имплантация в металлах // Поверхность. Физика, химия, механика. 1982. №1. С.27-50 (С.40)). Имплантация стали ионами свинца не приводит к снижению коэффициента трения, хотя приводит к повышению усталости обработанной стали.

Недостаток описанного способа заключается в том, что существенно возрастает коэффициент трения, что затрудняет применение имплантированных ионами свинца сталей в нагруженных парах трения.

Наиболее близким по технической сущности к заявляемому способу является способ ионной имплантации ионами меди деталей в виде болтов из конструкционной стали 30ХГСН2А, при котором поверхность обрабатываемой детали подвергается воздействию пучка ионов меди с дозой (1…5)·1017 ион/см2 (Овчинников В.В., Козлов Д.А., Якутина С. В. Исследование свойств поверхности стали 30ХГСН2А после имплантации ионами меди (Машиностроение и инженерное образование. 2009. №2. С.7-13).

Недостатком прототипа является ограниченное увеличение износостойкости обработанной поверхности деталей. Увеличение дозы имплантирования ионов меди приводит к росту длительности обработки при постоянстве значения усталости обработанной стали и появлению задиров на имплантированной поверхности при испытаниях на износостойкость.

Предлагаемый способ ионной имплантации конструкционной стали обеспечивает снижение коэффициента трения имплантированных деталей при эксплуатации при комнатной температуре.

Технический результат, на достижение которого направлен заявляемый способ, обеспечивается тем, что после имплантирования ионов меди проводят имплантацию ионов свинца, дозу имплантации которого выбирают в интервале (0,2…0,3)·D, где D - доза имплантирования ионами меди.

Заявляемый способ включает в себя следующую последовательность операций:

- облучение обрабатываемой стали ионами меди с дозой имплантирования D((1-5)·1017 ион/см2).

- облучение обрабатываемой стали ионами свинца с дозой имплантирования в интервале (0,2…0,3)·D, где D - доза имплантирования ионами меди.

Подробнее сущность заявляемого способа поясняется графиками и фотографиями:

- на фиг.1 представлен график зависимости усталости стали 30ХГСН2А, имплантированной ионами свинца от дозы имплантации;

- на фиг.2 - график изменения коэффициента трения стали 30ХГСН2А, имплантированной ионами свинца от дозы имплантации;

- на фиг.3 - показана топология поверхности стали 30ХГСН2А, имплантированной ионами свинца с дозой менее 0,2·D после испытаний на износ;

- на фиг.4 - показана топология поверхности стали 30ХГСН2А, имплантированной ионами свинца с дозой 0,25·D после испытаний на износ;

- на фиг.5 - показана топология поверхности стали 30ХГСН2А, имплантированной ионами свинца с дозой 0,35·D после испытаний на износ.

Проведение предварительной имплантации ионами меди обеспечивает изменение поля напряжений в имплантированном слое стали 30ХГСН2А и, соответственно, дислокационной картины, влияющей на показатели усталости, износостойкости и на величине коэффициента трения. При дозе имплантации меди (1-5)·1017 ион/см2 отмечается увеличение усталости стали 30ХГСН2А с 528 МПа до 684 МПа (рост на 11%). При этом коэффициент трения стали 30ХГСН2А, имплантированной медью, составил 0,06.

Увеличение доли имплантирования ионов свинца в сталь 30ХГСН2А, предварительно имплантированную медью, способствует увеличению предела усталости до значения 877 МПа (увеличение на 66%) при дозе имплантации 0,4·D (фиг.1). Однако при этом наблюдается увеличение коэффициента трения, особенно при дозе имплантации свинца более 0,3·D (фиг.2). Поэтому целесообразно ограничить дозу имплантации свинца интервалом (0,2…0,3)·D.

Для оценки влияния заявляемого способа ионной имплантации на износостойкость стали 30ХГСН2А была выполнена имплантация болтов диаметром 12 мм из указанной стали в состоянии после закалки и отпуска. На болтах определяли величину коэффициента трения скольжения без смазки. Испытания проводились на специальном стенде, обеспечивающем заданное усилие прижатия контртела к поверхности болта и регистрацию момента страгивания болта при вращении в контакте с контртелом.

Для определения предела усталости при изгибе были изготовлены круглые образцы с рабочей частью диаметром 5 мм, которые были имплантированы на одинаковых режимах с болтами. После определения коэффициента трения на пути трения 18 м была исследована поверхность трения болта, которая находилась в контакте с контртелом (не имплантированная сталь 30ХГСН2А в виде пальца с диаметром рабочей части 2 мм). Результаты испытаний представлены в таблице 1.

Таблица 1 № п.п. Доза имплантации ионами меди D, ион/см2 Доза имплантации ионами свинца, ион/см2 Соотношение доз имплантации свинца и меди Предел усталости, МПа Коэффициент трения 1 1017 1016 0,1 695 0,07 2 1017 2·1016 0,2 720 0,08 3 1017 2,5·1016 0,25 755 0,09 4 1017 3·1016 0,3 810 0,10 5 1017 4·1016 0,4 877 0,16 6 1017 5·1016 0,5 890 0,28

Таким образом, предел усталости имплантированной стали 30ХГСН2А существенно повышается при дозе имплантации ионами (0,2…0,4)·D, где D - доза имплантирования ионами меди. Увеличение дозы имплантации свинцом свыше 0,5·D вызывает значительное увеличение продолжительности обработки, хотя и обеспечивает повышение предела усталости до 890 МПа. Следует отметить, что наблюдается резкое возрастание коэффициента трения при дозе имплантирования свинца более 0,3·D.

Анализ топологии поверхности болтов после определения коэффициента трения показал, что при имплантировании свинца менее 0,2·D из-за малых искажений в структуре поверхностного слоя стали 30ХГСН2А, наблюдается выкрашивание поверхности болта (фиг.3). При дозах имплантирования свинца (0,2…0,3)·D не наблюдается задиров поверхности имплантированной стали (фиг.4). При увеличении дозы имплантирования свинца свыше 0,3·D в поверхностном слое стали 30ХГСН2А возникают конгломераты свинца, приводящие к увеличению коэффициента трения и появлению задиров (фиг.5).

Из представленных результатов испытаний следует, что использование заявляемого способа ионной имплантации обеспечивает повышение предела усталости и снижение коэффициента трения обработанных деталей из стали 30ХГСН2А при их эксплуатации в условиях трения скольжения.

Похожие патенты RU2442843C1

название год авторы номер документа
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 2011
  • Овчинников Виктор Васильевич
  • Лукьяненко Елена Владимировна
  • Боровин Юрий Михайлович
  • Шляпина Ирина Рафаиловна
  • Якутина Светлана Викторовна
RU2482218C1
СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ ГАЗОВ МЕТАЛЛОВ И СПЛАВОВ 2012
  • Учеваткина Надежда Владимировна
  • Овчинников Виктор Васильевич
  • Боровин Юрий Михайлович
  • Лукьяненко Елена Владимировна
  • Якутина Светлана Викторовна
  • Кравченков Антон Николаевич
RU2509174C1
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТИ ДЕТАЛЕЙ ИЗ СТАЛИ 30ХГСН2А 2010
  • Овчинников Виктор Васильевич
  • Козлов Дмитрий Александрович
  • Якутина Светлана Викторовна
RU2430991C1
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 2014
  • Овчинников Виктор Васильевич
  • Боровин Юрий Михайлович
  • Лукьяненко Елена Владимировна
  • Учеваткина Надежда Владимировна
  • Жданович Ольга Андреевна
  • Скакова Татьяна Юрьевна
RU2581536C1
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 2011
  • Овчинников Виктор Васильевич
  • Боровин Юрий Михайлович
  • Серикова Екатерина Александровна
  • Лукьяненко Елена Владимировна
  • Шляпина Ирина Рафаиловна
  • Козлов Дмитрий Александрович
RU2465373C1
СПОСОБ ИМПЛАНТАЦИИ КОНСТРУКЦИОННОЙ СТАЛИ ИОНАМИ МЕДИ И СВИНЦА 2011
  • Овчинников Виктор Васильевич
  • Козлов Дмитрий Александрович
  • Якутина Светлана Викторовна
  • Немов Алексей Сергеевич
RU2458182C1
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛИ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 2016
  • Боровин Юрий Михайлович
  • Овчинников Виктор Васильевич
  • Учеваткина Надежда Владимировна
  • Жданович Ольга Андреевна
  • Лукьяненко Елена Владимировна
RU2637189C1
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2011
  • Учеваткина Надежда Владимировна
  • Семендеева Ольга Валерьевна
  • Овчинников Виктор Васильевич
  • Кравченков Антон Николаевич
  • Шляпина Ирина Рафаиловна
RU2470091C1
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 2013
  • Овчинников Виктор Васильевич
  • Боровин Юрий Михайлович
  • Лукьяненко Елена Владимировна
  • Якутина Светлана Викторовна
  • Учеваткина Надежда Владимировна
RU2529337C1
СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ АЗОТА ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 2014
  • Овчинников Виктор Васильевич
  • Боровин Юрий Михайлович
  • Лукьяненко Елена Владимировна
  • Учеваткина Надежда Владимировна
  • Жданович Ольга Андреевна
  • Скакова Татьяна Юрьевна
RU2585149C1

Иллюстрации к изобретению RU 2 442 843 C1

Реферат патента 2012 года СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ КОНСТРУКЦИОННОЙ СТАЛИ ИОНАМИ МЕДИ И СВИНЦА

Изобретение относится к области машиностроения, а именно к способам ионной обработки поверхности деталей из конструкционных сталей. В поверхность стали имплантируют ионы меди с дозой (1-5)·1017 ион/см2, затем проводят имплантацию ионов свинца с дозой (0,2…0,3)·D, где D - доза имплантирования ионами меди. Повышается предел усталости и снижается коэффициент трения обрабатываемых деталей. 5 ил., 1 табл.

Формула изобретения RU 2 442 843 C1

Способ ионной имплантации конструкционной стали, при котором в поверхность стали имплантируют ионы меди с дозой (1-5)·1017 ион/см2, отличающийся тем, что после имплантирования ионов меди проводят имплантацию ионов свинца, дозу имплантации которого выбирают в интервале (0,2…0,3)·D, где D - доза имплантирования ионами меди.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442843C1

СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ СТАЛИ И СПЛАВОВ НА ОСНОВЕ МЕДИ 1991
  • Попова Г.Н.
  • Гусева М.И.
  • Шеховцев Е.Д.
  • Владимиров Б.Г.
RU2068459C1
СПОСОБ ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ИЗДЕЛИЯ 2007
  • Пименов Валерий Николаевич
  • Демина Елена Викторовна
  • Грибков Владимир Алексеевич
  • Масляев Сергей Алексеевич
  • Иванов Лев Иванович
  • Дубровский Александр Викторович
  • Ковтун Алексей Викторович
RU2340703C1
Способ формирования потоков штучных предметов 1987
  • Нигора Владимир Николаевич
  • Кузнецов Алексей Алексеевич
SU1490063A1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВСХОЖЕСТИ СЕМЯН 1991
  • Савельев Виктор Андреевич
RU2017366C1
Устройство для отбора элегаза из газонаполненных объектов 1989
  • Салехов Лерий Табризович
SU1719823A1

RU 2 442 843 C1

Авторы

Овчинников Виктор Васильевич

Козлов Дмитрий Александрович

Якутина Светлана Викторовна

Немов Алексей Сергеевич

Даты

2012-02-20Публикация

2010-10-06Подача