СПОСОБ ПОЛУЧЕНИЯ ЛИНЕЙНОГО ПОЛИМЕТИЛФЕНИЛСИЛОКСАНА С КОНЦЕВЫМИ ГИДРОКСИЛЬНЫМИ ГРУППАМИ ПОЛИКОНДЕНСАЦИЕЙ МЕТИЛФЕНИЛДИАЛКОКСИСИЛАНА В АКТИВНОЙ СРЕДЕ Российский патент 2012 года по МПК C08G77/06 

Описание патента на изобретение RU2456307C1

Изобретение относится к области химической технологии кремнийорганических соединений, которые могут быть использованы для получения герметиков, клеев, блок-сополимеров и каучуков. Более конкретно, изобретение относится к разработке нового технологичного способа получения линейного полиметилфенилсилоксана с концевыми гидроксильными группами (линейного полиорганосилоксана, полидиорганосилоксан-α,ω-диола, линейного органополисилоксана) поликонденсацией метилфенилдиалкоксисиланов в активной среде. Под термином «активная среда» в данном изобретении следует понимать вещество, являющееся одновременно и растворителем, растворяющим все компоненты реакционной смеси, и реагентом, участвующим в химическом процессе.

Известно, что линейные полиметилфенилсилоксаны могут быть получены полимеризацией циклов или поликонденсацией дифункциональных мономеров (Brook M. Silicon in Organic, Organometallic, and Polymer Chemistry, 1995, John Wiley & Sons, Inc.).

Полимеризационные методы позволяют получать как полиметилфенилсилоксаны с низким содержанием циклических примесей в продукте. Так, известен способ получения низкомолекулярных полидиорганосилоксан-α,ω-диолов с ароматическими заместителями у атома кремния, в том числе и полиметилфенилсилоксан-α,ω-диолов, полимеризацией циклотрисилоксанов в хлороформе в присутствии треххлористого фосфора (SU 594131), позволяющий получить продукт с низким содержанием циклических примесей (1,3%). Однако полимеризационные методы обладают значительным недостатком - необходимостью предварительного получения исходных циклосилоксанов, что представляет собой отдельную трудоемкую задачу и значительно увеличивает число стадий в технологическом процессе.

Известен способ получения полиорганосилоксанов, в том числе и полиметилфенилсилоксанов с концевыми гидроксильными группами, гидролизом диэтоксисиланов в тетрагидрофуране в присутствии пара-толуолсульфокислоты (Ardhyananta H., Kawauchi Т., Ismail H., Takeichi Т. Polymer 2009, 50, 5959-5969). Этим способом можно получить как низкомолекулярные, так и высокомолекулярные продукты. Недостатками процесса являются высокая полидисперсность продуктов, неполная конверсия алкокси-групп в случае метилфенил- и дифенилдиэтоксисилана, а также необходимость удаления катализатора.

Наиболее близким по технической сущности и достигаемому результату к заявляемому способу является способ получения линейных органополисилоксанов, в частности полиметилфенилсилоксана, с концевыми гидроксильными группами гидролизом диалкоксисилана или продукта гидролиза алкоксисилана в водном растворе кислоты с pH от 1.0 до 5.0 (US 5378788). Недостатками способа являются низкий выход продукта (59%), неполная конверсия исходных реагентов и алкокси-групп, необходимость нейтрализации смеси оксидами металлов, удаления воды, спирта и реагента, не вступившего в реакцию, что приводит к увеличению числа стадий в технологическом процессе.

Задачей заявляемого изобретения является получение нового технического результата, заключающегося в создании нового экологически безопасного технологичного способа получения линейного олигометилфенилсилоксана с концевыми гидроксильными группами поликонденсацией метилфенилдиалкоксисилана в активной среде, который бы обеспечивал высокие качества образующегося олигомера - отсутствие остаточных алкокси-групп и низкое содержание циклических продуктов.

Задача решается тем, что разработан новый способ получения линейного полиметилфенилсилоксана с концевыми гидроксильными группами, заключающийся в том, что осуществляют процесс поликонденсации метилфенилдиалкоксисилана, выбранного из ряда метилфенилдиалкоксисиланов общей формулы (I)

где Alk означает алкильная группа от С1 до C4,

в активной среде, представляющей собой безводную карбоновую кислоту, при температуре кипения реакционной смеси до полной конверсии алкокси-групп.

В качестве карбоновой кислоты используют кислоту, выбранную из ряда: муравьиная, уксусная, пропионовая, изомасляная, триметилуксусная.

Мольное соотношение метилфенилдиалкоксисилана и карбоновой кислоты составляет от 1:3 до 1:10.

Поликонденсацию в активной среде осуществляют в температурном интервале от 20°C до температуры кипения реакционной смеси.

Дополнительно проводят удаление летучих компонентов в вакууме при 20°C.

Полученный полиметилфенилсилоксан может быть использован как исходный реагент для получения высокомолекулярного полиметилфенилсилоксана.

В отличие от известного способа (US 5378788), где гидролиз диалкоксисилана или продукта гидролиза алкоксисилана осуществляют в водном растворе кислоты с pH от 1.0 до 5.0 с последующей нейтрализацией смеси оксидами металлов, удалением воды и отгонкой летучих продуктов, в заявленном способе поликонденсацию метилфенилдиалкоксисилана проводят в активной среде, представляющей собой безводную карбоновую кислоту, с последующим удалением летучих продуктов и карбоновой кислоты в вакууме.

Таким образом, достигнут новый технический результат: полная конверсия исходного метилфенилдиалкоксисилана и полное отсутствие алкокси-групп, низкое содержание циклических продуктов, технологичность процесса.

В общем виде процесс может быть представлен следующей схемой:

где:

Alk означает алкильная группа от C1 до C4,

Alk' означает алкильная группа от C1 до C3,

n равно 12-14,

k равно 3-4.

Мониторинг реакции поликонденсации метилфенилдиалкоксисиланов в активной среде осуществляли с помощью 1Н ЯМР спектроскопии, по уменьшению до полного исчезновения сигналов алкокси-групп исходного метилфенилдиалкоксисилана.

Как видно из представленной выше схемы, продукт реакции содержит смесь метилфенилциклосилоксанов и линейных полиметилфенилсилоксанов с концевыми гидроксильными группами.

Для проведения анализа строения полученного продукта проводили блокирование гидроксильных групп триметилхлорсиланом в условиях, обеспечивающих их полную конверсию.

Исследование блокированных образцов 1Н ЯМР-спектроскопией позволило определить количество концевых гидроксильных групп в структуре полученных олигометилфенилсилоксанов по соотношению сигналов триметилсилильных блокирующих групп в области δ=0,12 м.д. и протонов фенильного заместителя у атома кремния в области δ=7,12 м.д. В качестве примера на фиг.1 приведен 1Н ЯМР-спектр блокированного продукта, полученного по примеру 1.

ГПХ-анализ образцов полиметилфенилсилоксанов позволил определить молекулярную массу по отношению к линейным полистирольным стандартам и процентное содержание циклических компонентов в продукте. В качестве примера на фиг.2 приведена типичная ГПХ-кривая полиметилфенилсилоксана, полученного по примеру 4.

В таблице представлены условия получения и результаты исследования полиметилфенилсилоксанов для примеров 1-5.

На фиг.1 представлен ЯМР-1H спектр блокированного триметилхлорсиланом полиметилфенилсилоксана, полученного по примеру 1.

На фиг.2 приведена ГПХ-кривая полиметилфенилсилоксана, полученного по примеру 4.

Изобретение может быть проиллюстрировано следующими примерами.

Пример 1. Получение линейного полиметилфенилсилоксана

182 г (1 моль) метилфенилдиметоксисилана постепенно прикалывают к 611 г (10 моль) безводной уксусной кислоты, предварительно нагретой до температуры кипения. Реакционную смесь кипятят до полного исчезновения метокси-групп, после чего избыток уксусной кислоты и образовавшиеся летучие продукты удаляют в вакууме 1 мм/Hg при 20°C. Для проведения анализов обрабатывают пробу полученного метилфенилсилоксана триметилхлорсиланом. ГПХ: Мр=1100. 1Н ЯМР: 25% концевых ОН-групп (по соотношению протонов (СН3)3Si- и C6H5Si-групп). Выход полиметифенилсилоксана количественный. Содержание линейного полиметилфенилсилоксана в продукте составляет 65%. Содержание циклических продуктов - 35%.

Примеры 2-5

Синтезы осуществляют аналогично примеру 1. Условия получения и результаты исследования полученных полиметилфенилсилоксанов представлены в таблице.

Пример 6

Смесь 189 г (0,9 моль) метилфенилдиэтоксисилана и 550 г (9 моль) безводной уксусной кислоты кипятят до полного исчезновения этокси-групп, после чего избыток уксусной кислоты и образовавшиеся летучие продукты удаляют в вакууме 1 мм/Hg при 20°С. Для проведения анализов обрабатывают пробу полученного полиметилфенилсилоксана триметилхлорсиланом. ГПХ: Мр=1600. 1Н ЯМР: 16% концевых ОН-групп (по соотношению протонов (СН3)3Si- и C6H5Si-групп). Выход полиметифенилсилоксана количественный. Содержание линейного полиметилфенилсилоксана в продукте составляет 75%. Содержание циклических продуктов - 25%.

Пример 7. Получение линейного полиметилфенилсилоксана

Смесь 182 г (1 моль) метилфенилдиметоксисилана и 305,5 г (5 моль) уксусной кислоты постепенно прикалывают к 305,5 г (5 моль) безводной уксусной кислоты, предварительно нагретой до температуры кипения. Реакционную смесь кипятят до полного исчезновения метокси-групп, после чего избыток уксусной кислоты и образовавшиеся летучие продукты удаляют в вакууме 1 мм/Hg при 20°C. Для проведения анализов обрабатывают пробу полученного полиметилфенилсилоксана триметилхлорсиланом. ГПХ: Мр=1600. 1Н ЯМР: 16% концевых ОН-групп (по соотношению протонов (СН3)3Si- и C6H5Si-групп). Выход полиметифенилсилоксана количественный. Содержание линейного полиметилфенилсилоксана в продукте составляет 85%. Содержание циклических продуктов - 15%.

В качестве иллюстрации возможностей применения полученных полиметилфенилсилоксанов можно привести пример получения высокомолекулярного полиметилфенилсилоксана на их основе.

Получение линейного высокомолекулярного полиметилфенилсилоксана с молекулярной массой 33000

К полиметилфенилсилоксану, полученному по примеру 7, добавляют 1% (по массе) фторида цезия и перемешивают в вакууме 1 мм/Hg при 180°C. Для проведения анализов обрабатывают пробу полученного продукта триметилхлорсиланом. ГПХ: Мр=33000. 1H ЯМР: 0,8% концевых ОН-групп (по соотношению протонов (CH3)3Si- и C6H5Si-групп). Выход продукта количественный. Содержание линейного высокомолекулярного полиметилфенилсилоксана в продукте составляет 85%. Содержание циклических продуктов - 15%.

Похожие патенты RU2456307C1

название год авторы номер документа
РАЗВЕТВЛЕННЫЕ ФТОРСОДЕРЖАЩИЕ КРЕМНИЙОРГАНИЧЕСКИЕ СОПОЛИМЕРЫ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ГИДРОФОБНОЕ ПОЛИМЕРНОЕ ПОКРЫТИЕ НА ИХ ОСНОВЕ 2014
  • Музафаров Азиз Мансурович
  • Солдатов Михаил Александрович
  • Калинина Александра Александровна
  • Шереметьева Наталья Александровна
  • Демченко Нина Васильевна
  • Серенко Ольга Анатольевна
RU2565671C1
СПОСОБ ПОЛУЧЕНИЯ ЛИНЕЙНЫХ ПОЛИДИМЕТИЛСИЛОКСАНОВ С КОНЦЕВЫМИ ГИДРОКСИЛЬНЫМИ ГРУППАМИ ПОЛИКОНДЕНСАЦИЕЙ ДИМЕТИЛДИАЛКОКСИСИЛАНОВ В АКТИВНОЙ СРЕДЕ 2010
  • Музафаров Азиз Мансурович
  • Бычкова Александра Александровна
  • Василенко Наталия Георгиевна
  • Демченко Нина Васильевна
  • Кондракова Наталья Николаевна
RU2456308C2
Способ получения разветвленных полиметилфенилсилоксановых жидкостей 2023
  • Музафаров Азиз Мансурович
  • Мажорова Надежда Гаврииловна
  • Терещенко Алексей Сергеевич
  • Калинина Александра Александровна
  • Мешков Иван Борисович
RU2811819C1
НАНОРАЗМЕРНЫЕ МОДИФИЦИРОВАННЫЕ МОЛЕКУЛЯРНЫЕ СИЛИКАЗОЛИ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2010
  • Музафаров Азиз Мансурович
  • Казакова Валентина Васильевна
  • Мешков Иван Борисович
  • Воронина Наталья Вячеславовна
RU2451636C2
ПОЛИМЕТИЛБЕНЗИЛСИЛОКСАНЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2014
  • Музафаров Азиз Мансурович
  • Миленин Сергей Александрович
  • Калинина Александра Александровна
  • Василенко Наталия Георгиевна
RU2565674C1
ПОЛИНАТРИЙОКСИОРГАНОСИЛОКСАНЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2006
  • Музафаров Азиз Мансурович
  • Ребров Евгений Анатольевич
  • Василенко Наталия Георгиевна
  • Рогуль Галина Сергеевна
RU2293743C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕТИЛГИДРОСИЛОКСАНОВ 2015
  • Музафаров Азиз Мансурович
  • Пряхина Татьяна Алексеевна
  • Калинина Александра Александровна
  • Котов Валерий Михайлович
  • Болдырев Константин Леонидович
  • Молодцова Юлия Алексеевна
  • Эльманович Игорь Владимирович
  • Пигалёва Марина Алексеевна
  • Галлямов Марат Олегович
RU2601561C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИОРГАНОСИЛОКСАНОВ 2014
  • Музафаров Азиз Мансурович
  • Калинина Александра Александровна
  • Темников Максим Николаевич
  • Эльманович Игорь Владимирович
  • Пигалёва Марина Алексеевна
  • Жильцов Андрей Сергеевич
  • Галлямов Марат Олегович
RU2576311C1
КРЕМНИЙОРГАНИЧЕСКИЕ НАНОГЕЛИ С МОДИФИЦИРОВАННОЙ ПОВЕРХНОСТЬЮ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2014
  • Музафаров Азиз Мансурович
  • Мигулин Дмитрий Алексеевич
  • Мешков Иван Борисович
  • Калинина Александра Александровна
  • Василенко Наталия Георгиевна
RU2565676C1
ПОЛИФЕНИЛДИМЕТИЛСИЛОКСАНОВЫЕ СВЯЗУЮЩИЕ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2009
  • Музафаров Азиз Мансурович
  • Татаринова Елена Анатольевна
  • Егорова Екатерина Викторовна
  • Мешков Иван Борисович
RU2422472C1

Иллюстрации к изобретению RU 2 456 307 C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ЛИНЕЙНОГО ПОЛИМЕТИЛФЕНИЛСИЛОКСАНА С КОНЦЕВЫМИ ГИДРОКСИЛЬНЫМИ ГРУППАМИ ПОЛИКОНДЕНСАЦИЕЙ МЕТИЛФЕНИЛДИАЛКОКСИСИЛАНА В АКТИВНОЙ СРЕДЕ

Изобретение относится к области химической технологии кремнийорганических соединений. Предложен способ получения линейных олигометилфенилсилоксанов с концевыми гидроксильными группами поликонденсацией метилфенилдиалкоксисилана, выбранного из ряда метилфенилдиалкоксисиланов общей формулы (I)

где Alk означает алкильная группа от C1 до C4, в активной среде, представляющей собой безводную карбоновую кислоту, до полной конверсии алкокси-групп. В качестве карбоновой кислоты используют кислоту, выбранную из ряда: муравьиная, уксусная, пропионовая, изомасляная, триметилуксусная. Мольное соотношение метилфенилдиалкоксисилана и карбоновой кислоты составляет от 1:3 до 1:10. Процесс поликонденсации в активной среде осуществляют в температурном интервале от 20°C до температуры кипения реакционной смеси. Удаление летучих компонентов проводят в вакууме при 20°С. Технический результат - достижение полной конверсии исходного метилфенилдиалкоксисилана и алкокси-групп, низкое содержание циклических продуктов, экологичность процесса. 5 з.п. ф-лы, 2 ил., 1 табл., 7 пр.

Формула изобретения RU 2 456 307 C1

1. Способ получения линейного полиметилфенилсилоксана с концевыми гидроксильными группами, заключающийся в том, что осуществляют процесс поликонденсации метилфенилдиалкоксисилана, выбранного из ряда метилфенилдиалкоксисиланов общей формулы (I)

где Alk означает алкильная группа от C1 до C4,
при этом процесс поликонденсации осуществляют в активной среде, представляющей собой безводную карбоновую кислоту, до полной конверсии алкоксигрупп.

2. Способ по п.1, отличающийся тем, что в качестве карбоновой кислоты используют кислоту, выбранную из ряда: муравьиная, уксусная, пропионовая, изомасляная, триметилуксусная.

3. Способ по п.1, отличающийся тем, что мольное соотношение метилфенилдиалкоксисилана и карбоновой кислоты составляет от 1:3 до 1:10.

4. Способ по п.1, отличающийся тем, что процесс поликонденсации осуществляют в температурном интервале от 20°C до температуры кипения реакционной смеси.

5. Способ по п.1, отличающийся тем, что дополнительно проводят удаление летучих компонентов в вакууме при 20°C.

6. Способ по п.1, отличающийся тем, что полученный полиметилфенилсилоксан может быть использован как исходный реагент для получения высокомолекулярного полиметилфенилсилоксана.

Документы, цитированные в отчете о поиске Патент 2012 года RU2456307C1

US 5378788 A, 03.01.1995
RU 2007115199 A, 10.11.2008
Способ получения низкомолекулярных полидиорганосилоксан- -диолов с ароматическими заместителями у атома кремния 1976
  • Курлова Татьяна Владимировна
  • Южелевский Юлий Абрамович
  • Бандурина Римма Александровна
SU594131A1
Система автоматического управления 1974
  • Ганин Игорь Алексеевич
  • Заведеев Аркадий Иванович
  • Митрошин Эдуард Иванович
  • Петров Борис Николаевич
  • Уколов Игорь Сергеевич
SU568937A1

RU 2 456 307 C1

Авторы

Музафаров Азиз Мансурович

Бычкова Александра Александровна

Егорова Екатерина Викторовна

Василенко Наталия Георгиевна

Демченко Нина Васильевна

Даты

2012-07-20Публикация

2011-03-22Подача