Предлагаемое изобретение относится к аналитической химии, а именно к способам определения содержания элементов в урановых материалах, например в гексафториде урана, в частности кремния.
Заявляемое техническое решение может быть использовано при определении компонентов, содержание которых в гексафториде урана подлежит контролю.
К гексафториду урана как к исходному сырью для обогащения по изотопу уран-235 предъявляются жесткие требования по чистоте продукта, в частности по содержанию кремния, элемента, образующего летучие фториды. Содержание кремния в гексафториде урана согласно ASTM 787-2006 [1] ограничено величиной 100 ppm (100·10-4% к урану). Также следует отметить, что для анализа закиси-окиси урана высокой чистоты необходимо определять кремний на уровне 5 ppm.
Известны прямые спектрофотометрические методики определения кремния в урановых материалах. Среди них методики, описанные в сборнике стандартных методов ASTM: методика спектрофотометрического определения кремния с молибдатом аммония в ГФУ (ASTM С 761, Annual book of ASTM standards: С 761-2004. Spectrophotometric Determination of Silicon and Phosporus, секция №45) [2] и растворах уранилнитрата (ASTM С 799, Annual book of ASTM standards: С 799-2005. Silicon by the Molybdenum Blue (Photometric) Method, секция №62) [3]. К недостаткам перечисленных способов относятся низкая селективность, большая трудоемкость и длительность анализа.
Известен прямой экспрессный способ масс-спектрометрического с индуктивно-связанной плазмой (ИСП-МС) определения содержания кремния в урановых материалах (ASTM С 1287, Annual book of ASTM standards: С 1287-2003. Standard Test Method for Determination of Impurities in Uranium Dioxide by Inductively Coupled Plasma Mass Spectrometry) [4]. Следует отметить, что чувствительность определения кремния в урановых материалах данным методом ограничивается высоким уровнем фона и искажением аналитического сигнала из-за спектральных помех от полиатомных и молекулярных ионов СО+, N2 +, С2Н4 + и C2H2N+. В стандарте ASTM 1287 [4] для устранения мешающего влияния полиатомных ионов использованы отдельные условия для определения кремния, а именно условия «холодной» плазмы, которые достигаются при низкой мощности высокочастотного (ВЧ) генератора (1000 Вт) и высоком расходе распыляющего газа (1,1 л/мин). Недостатком этого способа является то, что, во-первых, низкая температура плазмы приводит к ухудшению чувствительности определения кремния вследствие неэффективной его ионизации, во-вторых, при анализе проб с высоким содержанием матричного элемента (урана) в условиях «холодной» плазмы происходит заметное увеличение подавляющего влияния урана, в результате чего определение кремния на уровне 5 ppm и ниже выполнить затруднительно.
Известен принятый в качестве прототипа способ определения кремния в гексафториде урана с предварительным отделением (Отраслевая инструкция. ОИ 001.464-2009. Кремний. Методика дистилляционно-спектрофотометрического определения в ГФУ, инв.16/12101) [5], заключающийся в нагревании анализируемой пробы при температуре 105°С в течение 5-6 часов в смеси кислот (смесь азотной, серной и фтористоводородной кислот) во фторопластовом автоклаве, отделении кремния в виде газообразного соединения тетрафторида кремния (SiF4), поглощении тетрафторида кремния щелочью, нанесенной тонким слоем на крышку автоклава, растворении щелочного слоя с поглощенным тетрафторидом кремния в насыщенном растворе борной кислоты, спектрофотометрическом определении кремния в полученном растворе по синей окраске кремнемолибденового комплекса.
Данный способ имеет следующие недостатки:
- необходимость проведения дополнительных операций по отделению кремния из анализируемого образца, что приводит к увеличению трудоемкости и длительности анализа;
- дополнительные операции приводят к увеличению погрешности.
Задачей заявляемого технического решения является создание такого способа определения кремния в урановых материалах, который, исключая недостатки, присущие известным способам, обеспечивал бы прямое, надежное и экспрессное определение содержания кремния в урановых материалах на уровне 5ррm к урану.
Поставленная задача решается тем, что в заявляемом способе определения кремния в гексафториде урана с использованием метода масс-спектрометрии, включающем гидролиз пробы ГФУ, разбавление раствора гидролизованного гексафторида урана до концентрации урана 1 г/л и установление градуировочной характеристики, измерение интенсивности аналитического сигнала кремния в анализируемой пробе осуществляют напрямую, без предварительного отделения кремния от анализируемого образца, при выбранных оптимальных параметрах работы динамической реакционной ячейки, в которую подается постоянный поток реакционно-способного молекулярного газа аммиака. Сочетание термохимических реакций с участием аммиака, происходящих в ячейке с определенной полосой пропускания, обеспечивает эффективное подавление спектральных помех полиатомных ионов.
Предложенный способ определения содержания кремния в урановых материалах реализован при анализе проб производства гексафторида урана с использованием масс-спектрометра, оснащенного реакционной динамической ячейкой Elan DRC II. Гидролиз проб гексафторида урана проводили с получением раствора уранилфторида с концентрацией урана 200-300 г/л. Перед выполнением измерений раствор уранилфторида разбавляли деионизованной водой до концентрации урана 1 г/л.
Как было установлено в процессе разработки заявляемого способа определения содержания кремния в урановых материалах, полиатомные ионы взаимодействуют с молекулами газа аммиака, напускаемого в динамическую реакционную ячейку, и устраняются из общего потока ионов. На фигуре показан участок масс-спектра в диапазоне масс от 25 до 30 а.е.м., полученный для изотопов кремния в стандартном режиме работы без напуска газа (вид А фиг.) и при расходе аммиака 0,3 мл/мин и RPq=0,6 (вид Б фиг.) при анализе раствора, содержащего 1 г/л урана («холостой» пробы). Как видно из фигуры (вид Б), использование аммиака приводит к существенному снижению фонового сигнала от полиатомных ионов на массе 28 а.е.м.
В результате исследований были выявлены следующие закономерности.
1. Оптимальным реакционным газом для наиболее эффективного устранения полиатомных помех при прямом ИСП-МС определении содержания кремния в урансодержащих растворах является аммиак.
2. Использование аммиака в качестве реакционного газа ячейки позволяет улучшить предел обнаружения при прямом определении кремния по изотопу 28Si в урановых растворах как минимум в 3 раза в сравнении со стандартным режимом измерений (без напуска газа).
3. Чувствительность определения кремния в урановых материалах можно увеличить в десять раз при подборе оптимального расхода реакционного газа и электрических параметров квадруполя ячейки - переменного ВЧ напряжения (параметра RPq), постоянного напряжения в ячейке (параметра RPa), постоянного напряжения, приложенного к стержням квадруполя ячейки и масс-анализатора (CRO и QRO) и ускоряющего напряжения в ячейки (CPV) за счет уменьшения общего фона и увеличения стабильности сигнала и эффективности передачи ионов.
4. Оптимальный расход реакционного газа составляет от 0,10 до 0,25 мл/мин. Установлено, что при расходе аммиака свыше 0,25 мл/мин возможны потери анализируемого элемента в результате протекания ионно-молекулярных реакций кремния с аммиаком, а при расходе менее 0,1 мл/мин снижается эффективность подавления «фоновых» сигналов от полиатомных ионов.
5. Как показали расчеты, увеличение величины параметра RPa (RPa>0) незначительно влияет на нижнюю границу полосы пропускания при измерении на массе mан=28 а.е.м., поэтому оптимальным значением данного параметра приняли значение RPa=0.
6. Оптимальное значение параметра RPq для эффективного удаления из ячейки мешающих ионов, вызывающих образование новых наложений, находится в диапазоне от 0,55 до 0,7 В. При высоких значениях ВЧ напряжения RPq>0,7 отмечено уменьшение интенсивности аналитического сигнала кремния, обусловленное протеканием эндотермической реакции передачи заряда между ионом 28Si+ и NН3, приводящей к потерям анализируемого элемента. При низких значениях RPq<0,5 снижается эффективность работы ячейки вследствие образования новых мешающих ионов с массовым числом 28 а.е.м.
7. Оптимальное значение постоянного напряжения составило UCRO=-2÷-3 В.
8. Для того чтобы обеспечить достаточную пропускную способность квадрупольного масс-анализатора при работе динамической реакционной ячейки, потенциал, приложенный к квадруполю анализатора QRO, должен иметь более высокое отрицательное значение, чем потенциал, приложенный к квадруполю ячейки - CRO, а именно в диапазоне от -5 до - 6 В. Изменение параметра QRO в меньшую или большую сторону приводит к ухудшению чувствительности определения содержания кремния.
9. Оптимальное значение ускоряющего напряжения CPV находится в диапазоне от -18 до -19 В. Изменение параметра QRO в меньшую или большую сторону также приводит к ухудшению чувствительности определения содержания кремния.
Результаты исследований представлены в таблицах 1, 2, 3. Термодинамические и кинетические характеристики ионно-молекулярных реакций полиатомных ионов на массе 28 а.е.м. с аммиаком приведены в таблице 1.
ΔHr, ккал/моль
Согласно данным таблицы 1 ионно-молекулярные реакции полиатомных ионов с аммиаком экзотермические (ΔНr<0), термодинамически разрешены. Наиболее эффективными реакциями являются реакции переноса заряда.
Результаты проведенных измерений аналитических сигналов кремния в аттестованной смеси и «холостой» пробе в зависимости от выбранных параметров работы ячейки приведены в таблице 2.
Как следует из таблицы 2, наилучшее соотношение аналитического сигнала и фонового достигается при расходе аммиака от 0,1 до 0,25 мл/мин и значении RPq параметра, составляющего от 0,55 до 0,7 В. В этих условиях происходит эффективное уменьшение фонового сигнала, что говорит о химическом разрешении мешающих ионов и кремния, и высокой реакционной способности аммиака по отношению к полиатомным и молекулярным ионам: N2 +, CO+, С2Н4 +, C2H2N+
Оптимальные параметры программы измерений аналитического сигнала кремния приведены в таблице 3.
Для определения зависимости интенсивности аналитического сигнала от содержания кремния готовили аттестованные смеси AC1, АС2, АС3 с массовой долей кремния 5, 50, 100 мкг/г урана соответственно, представляющие собой растворы иона кремния в растворе уранилфторида, полученного в результате гидролиза гексафторида урана высокой чистоты (не содержащего кремний) с массовой концентрацией урана 200-300 г/л.
Для установления градуировочной зависимости в плазму разряда вводили раствор уранилфторида (не содержащего кремния) с массовой концентрацией урана 1 г/л в качестве раствора «холостой» пробы, а также аттестованные смеси с содержанием кремния 5, 50 и 100 мкг/г урана в порядке их возрастания. Измеряли скорости счета ионов изотопа 28Si.
С помощью программного обеспечения масс-спектрометра с использованием метода множественной регрессии была получена зависимость интенсивности аналитического сигнала (имп./с) от массовой доли кремния (мкг/г урана) в аттестованной смеси, описываемая уравнением: I=а·С, где
С - содержание кремния в градуировочном образце, мкг/г урана;
I - интенсивность аналитического сигнала, имп./с;
а - рассчитанный коэффициент, равный 5,048.
На основании полученных данных был построен градуировочный график, по которому определяли содержание кремния в анализируемых пробах.
Пример определения содержания кремния в урановых материалах, например в гексафториде урана, с использованием метода масс-спектрометрии с индуктивно-связанной плазмой и динамической реакционной ячейки
Пробу гексафторида урана гидролизуют деионизованной водой.
В мерную полипропиленовую колбу вместимостью 50 см3 с помощью пипетки переменной вместимости 100-1000 мм3 отмеривают необходимую аликвотную часть раствора уранилфторида, полученного в результате гидролиза, рассчитанную при условии, что концентрация урана в растворе составляет 1 г/л, доводят деионизованной водой до метки и перемешивают. Для каждой пробы выполняется два параллельных определения.
Растворы проб, приготовленные для измерения, вводят в плазму разряда. Измеряют интенсивность аналитического сигнала иона кремния в растворах проб гидролизованного гексафторида урана в соответствии с параметрами проведения измерений на масс-спектрометре Elan DRC II, приведенными в таблице 3.
Массовую долю кремния в мкг/г урана в растворах проб гидролизованного гексафторида урана определяют с помощью установленной градуировочной характеристики.
Значения характеристик погрешностей определения массовой доли кремния к урану в гексафториде урана по заявляемому способу и способу-прототипу приведены в таблице 4. Таблица 4 - Характеристики относительных погрешностей измерений заявляемого способа в сравнении со способом-прототипом при доверительной вероятности Р=0,95.
Предложенный способ успешно прошел испытания, которые подтвердили высокую точность и экспрессность определения массовой доли кремния в гексафториде урана. Способ позволяет отказаться от стадии предварительного отделения кремния при анализе образца и связанных с этим дополнительных трудоемких операций, влияющих на точность и воспроизводимость анализа.
Источники информации
1. Annual book of ASTM standards: 787-2006. Standard Specification for Uranium Hexafluoride for Enrichment.
2. Annual book of ASTM standards: С 761-2004. Spectrophotometric Determination of Silicon and Phosporus.
3. Annual book of ASTM standards: С 799-2005. Silicon by the Molybdenum Blue (Photometric) Method.
4. Annual book of ASTM standards: С 1287-2003. Standard Test Method for Determination of Impurities in Uranium Dioxide by Inductively Coupled Plasma Mass Spectrometry.
5. Отраслевая инструкция. ОИ 001.464-2009. Кремний. Методика дистилляционно-спектрофотометрического определения в ГФУ, инв.16/12101.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ХЛОРА В УРАНЕ | 2009 |
|
RU2410681C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРИМЕСЕЙ В ТВЕРДЫХ СОЕДИНЕНИЯХ УРАНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2230704C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРИМЕСЕЙ В ГЕКСАФТОРИДЕ УРАНА | 2001 |
|
RU2223483C2 |
Способ определения содержания азота в гексафториде урана | 2021 |
|
RU2762276C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ СЕРЫ В УРАНОВЫХ МАТЕРИАЛАХ | 2009 |
|
RU2387990C1 |
СПОСОБ ОЧИСТКИ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ ОТ ОТЛОЖЕНИЙ УРАНА | 2014 |
|
RU2579055C1 |
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДА УРАНА | 2007 |
|
RU2355641C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ГЕКСАФТОРИДЕ УРАНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2187799C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА ДЛЯ КЕРАМИЧЕСКОГО ЯДЕРНОГО ТОПЛИВА | 2002 |
|
RU2240286C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ БРОМА В ГЕКСАФТОРИДЕ УРАНА | 2005 |
|
RU2296316C1 |
Изобретение относится к определению элементов-неметаллов в урановых материалах применительно к атомной промышленности. Масс-спектрометрический с индуктивно-связанной плазмой способ определения содержания кремния, например, в гексафториде урана осуществляют с использованием динамической реакционной ячейки с аммиаком в качестве реакционного газа при гидролизе пробы гексафторида урана, разбавлении полученного раствора до концентрации урана 1 г/л, установлении градуировочной характеристики, измерении интенсивности аналитического сигнала кремния в анализируемой пробе. Искомое содержание кремния находят по градуировочному графику. Способ не требует предварительного отделения кремния от анализируемого образца, а для подавления нежелательных спектральных помех используется реакционный газ аммиак, который напускается в ячейку с постоянной скоростью 0,24 мл/мин, при выбранных оптимальных параметрах работы квадруполя ячейки: высокочастотном (RPq=0,6 B) и постоянном напряжении (RPa=0 В), что позволяет проводить прямое, надежное определение кремния в растворах при его содержании на уровне 5 мкг/л при содержании урана 1 г/л урана Достигается повышение точности и экспрессности анализа. 1 прим., 4 табл., 1 ил.
Способ определения содержания кремния в урановых материалах путем измерения интенсивности аналитического сигнала в исследуемом образце, включающий гидролиз пробы, например гексафторида урана, и разбавление пробы до концентрации урана 1 г/л, отличающийся тем, что определение кремния в гексафториде урана проводят прямым способом без предварительного отделения кремния от анализируемого образца с использованием масс-спектрометра с индуктивно-связанной плазмой, оснащенного динамической реакционной ячейкой, при выбранных оптимальных параметрах работы динамической реакционной ячейки, а именно при расходе реакционного газа аммиака, равном от 0,1 до 0,25 мл/мин, переменном ВЧ-напряжении RPq=0,55÷0,7 В, постоянном напряжении RPa=0 В, ускоряющем напряжении CPV=-19÷-18 В, напряжении на стержнях квадруполя ячейки CRO=-2÷-1 В, постоянном напряжении, приложенном к стержням квадруполя масс-анализатора QRO=-5÷6 В.
Отраслевая инструкция | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кремний | |||
Методика дистилляционно-спектрофотометрического определения в ГФУ, инв | |||
Устройство для электрической сигнализации | 1918 |
|
SU16A1 |
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ | 1997 |
|
RU2140110C1 |
ВЫСОКОЧИСТЫЙ БИОГЕННЫЙ КРЕМНИЙДИОКСИДНЫЙ ПРОДУКТ | 1996 |
|
RU2173576C2 |
Способ определения кремния в пентаоксиде ниобия | 1988 |
|
SU1681237A1 |
Способ определения кремния в металлах | 1983 |
|
SU1121613A1 |
Способ определения кремния в металлах | 1980 |
|
SU919991A1 |
DE 19906732 A1, 24.08.2000 | |||
JP 58143266 A, 25.08.1983. |
Авторы
Даты
2012-07-20—Публикация
2011-05-10—Подача