СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В НЕФТИ И НЕФТЕПРОДУКТАХ Российский патент 2012 года по МПК G01N27/44 

Описание патента на изобретение RU2457475C2

Изобретение относится к области определения содержания меркаптанов, хлорид- и сульфид-ионов в нефти и нефтепродуктах и может использоваться при кулонометрическом титровании в неводных растворах с потенциометрической индикацией точек эквивалентности.

Известен способ измерения отдельных компонентов в неводных средах, включающий сжигание пробы, поглощение газов с последующим кулонометрическим титрованием компонентов. Недостатком известного способа является то, что в данном методе определяется общее содержание хлора и сульфида. При использовании известной конструкции ячеек для определения ионов в неводных средах напряжение, накладываемое на генераторный и вспомогательный электроды за счет падения напряжения в растворе, существенным образом влияет на ЭДС гальванической ячейки и не позволяет фиксировать точки эквивалентности, и таким образом, проводить измерения (патент RU 2243552, 2004 г.).

Известен также способ определения компонентов в нефти потенциометрическим титрованием нитратом серебра с потенциометрической фиксацией точек эквивалентности [UOP LABORATORY TEST METHODS: 163-89 Hydrogen Sulfide and Mercaptan Sulfur in Liquid Hydrocarbons]. К недостаткам данного способа следует отнести наличие систематической погрешности, связанной с установлением характеристик титранта, а также необходимость достаточно частого переустановления характеристик титранта, что затрудняет возможность его использования в автоматических анализаторах.

Техническим результатом от использования предлагаемого изобретения является возможность определения в нефти примесей сульфидов, хлоридов и меркаптанов (а также бромидов и иодидов, в случае их присутствия) без применения титрантов, дающих систематическую погрешность определений, а также возможность автоматизации метода.

Согласно изобретению способ определения примесей в нефти и нефтепродуктах включает автоматический отбор пробы, перенос ее в измерительную электрохимическую ячейку, смешивание с минеральным или органическим электролитом, гомогенизацию полученной смеси, электрохимическую генерацию серебра анодным окислением генераторного серебряного электрода и последовательное кулонометрическое титрование смеси генерированными ионами серебра с фиксацией точек эквивалентности потенциометрическим способом с использованием индикаторного сереброселективного электрода.

Анодное окисление серебра преимущественно проводят в среде, содержащей электролит с концентрациями от 0,001 до 0,1М при значениях тока электролиза от 3 до 0,01 мА.

В качестве органического электролита преимущественно используют раствор соли лития с анионом органической кислоты. В качестве минерального электролита преимущественно используют раствор солей лития с неорганическими анионами. Соли лития, такие как гексафторфосфат, пехлорат и т.д., являются хорошими электролитами и обладают высокой растворимостью в органических растворителях.

При потенциометрической индикации точек эквивалентности в качестве электрода сравнения обычно используют pH-чувствительный стеклянный электрод.

Предлагаемое устройство для реализации такого способа включает камеру с перемешивающим устройством и штуцерами для подачи и удаления жидкостей. Камера состоит из двух сообщающихся между собой электрохимических ячеек, расположенных одна под другой. В нижней части камеры расположена генерирующая ячейка с двумя горизонтально установленными пластинчатыми электродами, из которых нижний является катодом и выполнен из платины, а верхний выполнен из серебра и имеет отверстия для сообщения с расположенной выше измерительной электрохимической ячейкой. В состав этой ячейки входят измерительный ионоселективный электрод и электрод сравнения.

Наиболее подходящим перемешивающим устройством служит магнитная мешалка, которую располагают между электродами генерирующей ячейки.

Катод генерирующей ячейки может быть вмонтирован в дно камеры. Желательно, чтобы площадь отверстий в аноде генерирующей ячейки составляла не менее 30% от общей поверхности пластины анода, что обеспечит более полную и надежную гомогенизацию смеси в камере.

Способ иллюстрируется на фиг.1 и 2.

Схематически измерительное устройство показано на Фиг.1 и представляет собой цилиндрическую камеру 1 со штуцером 9 подачи жидкостей и штуцером 10 отвода смеси. Предпочтительные размеры камеры 1: внутренний диаметр - 40-50 мм; высота - 60 мм. В камере 1 находятся две электрохимические ячейки, расположенные соосно, одна над другой, при этом генерирующая ячейка, ограниченная электродами 6 и 7, находится в нижней части камеры 1. Над ней располагается измерительная ячейка 4, в которой находятся измерительный ионоселективный электрод 2 и электрод 3 сравнения.

Генерирующая электрохимическая ячейка включает два пластинчатых горизонтально расположенных электрода 6 и 7. При этом нижний электрод - катод 7 может быть вмонтирован в дно камеры 1, а второй электрод - анод 6 находится на расстоянии, не превышающем 20 мм от катода 7. Между электродами располагается перемешивающее устройство - магнитная мешалка 5, функционирующая от внешнего воздействия - источника 8 переменного магнитного поля. Пластина верхнего электрода - анода 6 имеет отверстия, что позволяет осуществлять гомогенизацию измеряемого раствора во всем объеме обеих ячеек камеры 1. Площадь отверстий в аноде 6 генерирующей ячейки составляет не менее 30% от общей площади поверхности пластины анода.

Измерительный сереброселективный электрод 2 представляет собой модификацию ионоселективного электрода ИОНИКС 122 (ООО «ИОНИКС альфа»), который выполнен в виде трубки, на конце которой закреплен элемент, чувствительный к ионам серебра. Электродом 3 сравнения может быть выбран, например, pH-чувствительный датчик.

Устройство, в котором реализуется предложенный способ, работает следующим образом.

В камеру 1 через штуцер 9 подается проба фиксированного объема, отобранная, например, из нефтепровода с помощью автоматического перистальтического насоса. Затем в камеру 1 тем же путем подается фиксированный объем электролита. Смесь жидкостей гомогенизируется - перемешивается с помощью магнитной мешалки 5 в течение 2-3 минут.

Одновременно фиксируется ЭДС измерительной ячейки 4, составленной из стеклянного электрода 3, используемого в качестве электрода сравнения, и измерительного сереброселективного электрода 2 (индикаторного электрода типа ИОНИКС 122).

Подается постоянное напряжение на электроды 6 и 7 генерирующей электрохимической ячейки и фиксируется изменение ЭДС измерительной ячейки 4 во времени. При последовательном достижении точек эквивалентности измеряется количество электричества, затраченное на электролиз, и на основе объединенного закона Фарадея рассчитывается количество той или иной примеси, содержащейся в пробе.

После окончания измерений смесь жидкостей удаляют из камеры 1 по штуцеру 10 с помощью насоса. Перед измерением следующей пробы камера 1 промывается реагентом для промывки при работающей магнитной мешалке 5.

Для обеспечения 100% выхода по току и требуемой электропроводности растворов в качестве электролита (буферного раствора) используются минеральные и органические соли, например перхлорат или бензоат лития. Горизонтально расположенные индикаторный и генераторный электроды с расположенным между ними перемешивающим устройством и расположенной над ними гальванической измерительной ячейкой позволяют проводить измерения в органических средах, при этом устраняется влияние напряжения в генераторной части на потенциал измерительной ячейки.

Устройство заявленной конструкции позволяет повысить точность определения хлоридов, меркаптанов и сульфидов в нефти за счет исключения ошибок, связанных со стандартизацией титранта, упростить конструкцию анализатора и как следствие повысить точность определений.

Типичная кривая последовательного кулонометрического титрования сульфидов, меркаптанов и хлоридов приведена на Фиг.2. Кривая получена при концентрации сульфидов, меркаптанов и хлоридов, равной 10-4 мэквл./л. Сила тока составляла 0,98 мА. В качестве электролита использовался 0,01 М раствор перхлората лития в смешанном растворителе из равных объемов толуола и децилового спирта. Перед титрованием смеси примесей были определены точки эквивалентности на контрольных образцах, каждый из которых содержал только одну из названных примесей.

Определение концентрации хлорид ионов (Табл.1) возможно в диапазоне концентраций от 10 до 2000 мг/л. При концентрации хлорид ионов менее 10 мг/л фиксация точки эквивалентности затруднена, т.к. скачок титрования достаточно сильно размыт. При концентрации выше 2000 мг/л для сохранения временных характеристик анализа необходимо поддержание достаточно высокого тока электролиза выше 7 мА, что уменьшает выход по току и приводит к значительным погрешностям определений (выше 10 отн.%).

Таблица 1 Определение содержания хлоридов в нефти. Взято для анализа, мг/л Определено, мг/л 50,3 48,4 251,3 252,0 1008,7 1010,1 2500,6 2300,9 7,3 4,1 10,0 11,2 2000 2010

Определение содержания меркаптанов (Табл.2) возможно в диапазоне концентраций от 10 до 200 мг/л. В области концентраций меньше 1 мг/л сравнительно небольшая величина скачка потенциометрического детектора не позволяет зафиксировать точку эквивалентности, при концентрации меркаптанов выше 200 мг/л увеличивается ошибка определения, связанная с уменьшением выхода по току.

Определение содержания сульфидов в нефти (Табл.3) возможно в диапазоне концентраций от 5 до 200 мг/л. При содержании сульфидов меньше 5 мг/л фиксация точки эквивалентности затруднена, что приводит к увеличению погрешности определения. При увеличении концентрации выше 200 мг/л увеличение погрешности определения связано с уменьшением выхода по току.

Таблица 2 Определение содержания меркаптанов в нефти Взято для анализа, мг/л Определено, мг/л 21,2 20,9 75,4 76,0 44,2 45,6 5.0 5,1 100,0 101,9 4.0 4.8 150 139

Таблица 3 Определение содержания сульфидов в нефти Взято для анализа, мг/л Определено, мг/л 11,2 10,9 0.8 0.6 250,7 220,3 110,3 111,0 250,5 223,1 1.0 0.9 200 204

Таблица 4 Одновременное определение сульфидов, меркаптанов и хлоридов в нефти. Пример 1 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 545,2 548,1 Сульфид-ионов 110,2 108,3 Меркаптанов 76,4 77,0 Пример 2 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 10,2 10,1 Сульфид-ионов 110,2 108,3 Меркаптанов 76,4 77,0 Пример 3 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 545,2 548,1 Сульфид-ионов 1.1 1.2 Меркаптанов 76,4 77,0 Пример 4 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 545,2 548,1 Сульфид-ионов 110,2 108,3 Меркаптанов 5,4 53 Пример 5 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 2000 2006 Сульфид-ионов 200 198,3 Меркаптанов 100 97,0 Пример 6 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 10,0 9,8 Сульфид-ионов 1,00 0,94 Меркаптанов 5,00 4,8 Пример 7 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 7,0 5,2 Сульфид-ионов 0,5 1,4 Меркаптанов 3 4,8 Пример 8 Взято для анализа, мг/л Определено, мг/л Хлорид-ионов 2500 2300 Сульфид-ионов 250 210 Меркаптанов 150 130

Как видно из приведенных таблиц, существуют нефти и нефтепродукты с содержанием примесей в концентрациях меньше нижнего предела обнаружения, которые не детектируются данным способом.

Похожие патенты RU2457475C2

название год авторы номер документа
Способ кулонометрического определения галогенидов 1982
  • Костромин Александр Иванович
  • Бадретдинова Гузель Загидовна
  • Абдуллин Ильдар Фартович
SU1057837A1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МЕРКАПТАНОВ В НЕВОДНЫХ СРЕДАХ 2002
  • Берберова Н.Т.
  • Белинский Б.И.
  • Тараканов Г.В.
  • Шинкарь Е.В.
  • Маняшин А.О.
  • Гиренко Е.Е.
RU2207559C1
СПОСОБ ИДЕНТИФИКАЦИИ ПОДЛИННОСТИ ВИНА 2008
  • Шелудько Ольга Николаевна
  • Кильдишов Павел Геннадиевич
  • Стрижов Николай Константинович
  • Федорович Наталья Николаевна
RU2384841C1
СПОСОБ КУЛОНОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОРГАНИЧЕСКИХ КИСЛОТ В РАСТИТЕЛЬНОМ СЫРЬЕ И ИХ ПРЕПАРАТАХ 2010
  • Абдуллина Светлана Геннадиевна
  • Агапова Наталья Михайловна
  • Хазиев Рамиль Шамилевич
RU2450265C2
Способ определения меркаптанов в газовой смеси 1990
  • Сагателян Ованес Авдеевич
  • Картавцев Александр Викторович
  • Кулаков Борис Михайлович
SU1696990A1
Способ кулонометрического анализа металлов по осаждению 1960
  • Вайль Е.И.
  • Коссый Г.Г.
  • Кремер В.А.
SU136590A1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ПОЛИСУЛЬФАНОВ В ГАЗОВОЙ СЕРЕ 2006
  • Берберова Надежда Титовна
  • Шинкарь Елена Владимировна
  • Маняшин Алексей Олегович
  • Леонова Юлия Игоревна
RU2378644C2
Способ оперативной оценки качества винодельческой продукции 2016
  • Шелудько Ольга Николаевна
  • Гугучкина Татьяна Ивановна
  • Стрижов Николай Константинович
RU2631489C1
Состав мембраны ионоселективного электрода для определения хлорид-ионов 1989
  • Москвин Леонид Николаевич
  • Голиков Дмитрий Витальевич
  • Хромов-Борисов Сергей Никитич
SU1622812A1
ИОНОСЕЛЕКТИВНЫЙ ЭЛЕКТРОД ДЛЯ ОПРЕДЕЛЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ 1999
  • Мовчан Н.И.
  • Умарова Н.Н.
  • Юсупов Р.А.
  • Сопин В.Ф.
  • Зинкичева Т.Т.
RU2152609C1

Иллюстрации к изобретению RU 2 457 475 C2

Реферат патента 2012 года СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В НЕФТИ И НЕФТЕПРОДУКТАХ

Группа изобретений относится к определению содержания меркаптанов, хлорид- и сульфид-ионов в нефти и нефтепродуктах. Способ включает автоматический отбор пробы, перенос ее в измерительную электрохимическую ячейку, смешивание с электролитом в виде раствора минеральных или органических солей лития, гомогенизацию полученной смеси, электрохимическую генерацию серебра анодным окислением генераторного серебряного электрода и последовательное кулонометрическое титрование смеси генерированными ионами серебра с фиксацией точек эквивалентности потенциометрическим способом с использованием индикаторного сереброселективного электрода. Устройство содержит камеру с перемешивающим устройством и штуцерами для подачи и удаления жидкостей, причем камера состоит из двух сообщающихся между собой электрохимических ячеек, расположенных одна под другой. В нижней части камеры расположена генерирующая ячейка с двумя горизонтально установленными пластинчатыми электродами, из которых нижний является катодом и выполнен из платины, а верхний выполнен из серебра и имеет отверстия для сообщения с расположенной выше измерительной электрохимической ячейкой, в состав которой входят измерительный ионоселективный электрод и электрод сравнения. Достигается повышение точности и надежности определения. 2 н. и 5 з.п. ф-лы, 8 прим., 4 табл., 2 ил.

Формула изобретения RU 2 457 475 C2

1. Способ определения примесей в нефти и нефтепродуктах, включающий автоматический отбор пробы, перенос ее в измерительную электрохимическую ячейку, смешивание с электролитом в виде раствора минеральных или органических солей лития, гомогенизацию полученной смеси, электрохимическую генерацию серебра анодным окислением генераторного серебряного электрода и последовательное кулонометрическое титрование смеси генерированными ионами серебра с фиксацией точек эквивалентности потенциометрическим способом с использованием индикаторного сереброселективного электрода.

2. Способ по п.1, отличающийся тем, что анодное окисление серебра проводят в среде, содержащей электролит с концентрациями от 0,001 до 0,1 М при значениях тока электролиза от 3 до 0,01 мА.

3. Способ по п.1, отличающийся тем, что при потенциометрической индикации точек эквивалентности в качестве электрода сравнения используются pH-чувствительный стеклянный электрод.

4. Устройство для определения примесей в нефти и нефтепродуктах, включающее камеру с перемешивающим устройством и штуцерами для подачи и удаления жидкостей, причем камера состоит из двух сообщающихся между собой электрохимических ячеек, расположенных одна под другой, при этом в нижней части камеры расположена генерирующая ячейка с двумя горизонтально установленными пластинчатыми электродами, из которых нижний является катодом и выполнен из платины, а верхний выполнен из серебра и имеет отверстия для сообщения с расположенной выше измерительной электрохимической ячейкой, в состав которой входят измерительный ионоселективный электрод и электрод сравнения.

5. Устройство по п.6, отличающееся тем, что перемешивающее устройство представляет собой магнитную мешалку, расположенную между электродами генерирующей ячейки.

6. Устройство по п.4, отличающееся тем, что катод генерирующей ячейки вмонтирован в дно камеры.

7. Устройство по п.6, отличающееся тем, что площадь отверстий в аноде генерирующей ячейки составляет не менее 30% от общей поверхности пластины анода.

Документы, цитированные в отчете о поиске Патент 2012 года RU2457475C2

УСТРОЙСТВО И СПОСОБ ДЛЯ УПРАВЛЕНИЯ ОТОБРАЖЕНИЕМ МЕНЮ МИКРОВОЛНОВОЙ ПЕЧИ (ВАРИАНТЫ) 2002
  • Чой Киунг-Хван
  • Парк Вон-Киунг
RU2237387C2
0
  • М. Альховский, С. С. Денисов Л. А. Туреев
SU320772A1
Способ определения концентрации солей в нефти 1985
  • Карнеев Алексей Николаевич
  • Стромский Владимир Алексеевич
SU1408330A1
Способ количественного определения алифатических и ароматических спиртов в углеводородах 1977
  • Казакова Людмила Александровна
  • Уфимцев Виталий Павлович
SU645077A1
Устройство для кулонометрического титрования 1972
  • Усвяцов Алдан Александрович
  • Бариков Вадим Григорьевич
  • Крылов Юрий Александрович
  • Бричкин Лев Александрович
  • Гондельсман Илья Моисеевич
SU443301A1
ЛОПАТИН Б.А
Теоретические основы электрохимических методов анализа
- М.: ВШ, 1975, с.47, 70-72, 82-86.

RU 2 457 475 C2

Авторы

Стариков Владислав Петрович

Копытин Александр Викторович

Даты

2012-07-27Публикация

2008-04-03Подача