Изобретение относится к технологии получения солей меди (II) и может быть использовано в различных областях химической, металлургической, сельскохозяйственной и иных видов практик, в аналитическом контроле и в научных исследованиях.
Известно, что осаждение Cu(OH)2 из водных растворов хлорида, нитрата и сульфата меди протекает через промежуточную стадию образования основных солей постоянного состава (В.П.Чалый. Гидроокиси металлов (Закономерности образования, состав, структура и свойства). Киев: Наукова Думка, 1972. 159 с.; с.53). Это положение иллюстрируется двумя запатентованными способами получения хлороксида двухвалентной меди (пат. РФ. 2121974 опубл. 1998-11-20 и пат. РФ 2161128, опубл. 2000-12-27). В соответствии с первым взаимодействие кислого раствора хлорида двухвалентной меди с водной суспензией углекислого кальция ведут при постоянном перемешивании и барботаже сжатым воздухом при 25-30°С. При этом в качестве исходного раствора используют медно-хлоридные растворы с концентрацией меди 120 г/л и рН=0,9, а в качестве стабилизатора используют ионы хлора, которые содержат пептизатор - хлористый кальций.
В соответствии со вторым хлорид меди (II) обрабатывают раствором водного аммиака в присутствии каталитических количеств хроматов щелочных металлов или хромата аммония при перемешивании воздухом в присутствии оксида азота (IV) в соотношении 8:1 при 20-35°С.
Недостатками данных способов являются:
1. В качестве исходного сырья используется соль меди (II), являющаяся продуктом более глубокой химической переработки, чем например оксид меди (II).
2. Для проведения процесса нужен катализатор, который в каждом конкретном случае будет разным, а также стабилизатор процесса.
3 Процесс проводят в присутствии газообразной фазы (воздух или смесь воздуха с оксидом азота (IV) на барботаж).
4. Наличие барботажа газа требует соответствующего конструктивного оформления реактора, что значительно усложняет реакционный аппарат.
Наиболее близким к заявляемому является способ получения основного ацетата меди (II) (С.Д.Пожидаева, Т.А.Маякова, A.M.Иванов, Д.А.Сотникова. Промежуточные стадии при коррозионном поражении меди в водном растворе уксусной кислоты в присутствии оксида меди (II) в бисерной мельнице. Практика противокоррозионной защиты. 2010. - №2(56). - С.56-59). В соответствии с ним оксид меди (II) реагирует с кислотой с образованием промежуточного продукта основного ацетата меди (II), который преимущественно накапливается в твердой фазе реакционной смеси и может быть отделен фильтрованием, после чего отмыт от захваченных компонентов жидкой фазы реакционной смеси. Отмечается, что операции по разделению твердых и жидких фаз реакционной смеси нужно делать сразу же по завершении процесса. В противном случае основная соль продолжает реагировать с уксусной кислотой с образованием средней соли, содержание которой в выделяемом продукте растет с увеличением времени между моментами прекращения процесса и проведения разделения твердой и жидкой фаз получаемой в процессе реакционной смеси.
Недостатками данного способа являются:
1. В нем в качестве кислоты используется уксусная, т.е. довольно слабая органическая кислота, реагирующая с оксидом меди (II) в бисерной мельнице гораздо более легко и быстро, нежели с основной солью Cu(ОН)ОС(O)СН3. Совсем не очевидно, что такое соотношение констант скоростей первой и второй стадий суммарного брутто-процесса будет при замене уксусной кислоты на соляную или же азотную.
2. В условиях рассматриваемого в качестве прототипа способа основной ацетат меди Cu(ОН)ОС(O)СН3 является плохо растворимым соединением и накапливается преимущественно в твердой фазе реакционной смеси. Совсем не очевидно, что основной хлорид или нитрат меди (II) будет иметь такую же аномально плохую растворимость в реакционной смеси. Из этого следует и способ выделения продукта из реакционной смеси. Ясно, что разделение фаз путем простого фильтрования в качестве способа выделения целевого продукта в случае основного хлорида или нитрата меди (II) может и не быть.
3. То же самое можно сказать и о природе и количествах используемых стимулирующих добавок. Ясно лишь то, что они требуют в каждом конкретном случае индивидуального подбора.
4. Переход от слабой водорастворимой уксусной кислоты к сильным водорастворимым минеральным кислотам может существенно повлиять на целесообразное мольное соотношение реагентов и абсолютные значения их количеств в исходной загрузке, на требования к аппаратурному оформлению процесса и режимные характеристики его проведения.
Задачей предлагаемого решения является подобрать такие условия проведения процесса взаимодействия оксида меди (II) с соляной и азотной кислотами, которые бы обеспечили при комнатных и близких к ним температурах высокие выходы и избирательности по основным солям, а также приемлемые для практических целей скорости получения основных хлорида и нитрата меди (II).
Поставленная задача достигается тем, что процесс проводят в присутствии жидкой фазы, представляющей собой водный раствор соляной или азотной кислоты в диапазоне начальных концентраций от 0,4 до 2,7 моль/кг и мольном соотношении с оксидом меди (II) в диапазоне от (0,8:1) до (1,8:1) при массовом соотношении исходной загрузки и стеклянного бисера (1:0,2)÷(1:1) при температурах 15-50°С до момента самопрекращения процесса при текущем контроле за количеством накопившихся солей меди (II) и расходовавшейся на эти цели кислоты, после чего реакционную смесь отделяют от стеклянного бисера и фильтруют, отделенную твердую фазу промывают 0,2-0,5 моль/кг раствором кислоты-реагента и возвращают на загрузку повторного процесса, а промывной раствор объединяют с фильтратом реакционной смеси, полученную смесь нейтрализуют 1,2-3,3 моль/кг водным аммиаком, дозируемым малыми порциями таким образом, чтобы рН не превышал величины 6,5-7,1, выпавшую при нейтрализации твердую фазу продукта оставляют в контакте с жидкой фазой на 12-24 часа, после чего фильтруют, промывают дистиллированной водой и сушат.
Характеристика используемого сырья:
Оксид меди (II) по ГОСТ 16539-79,
Кислота соляная ГОСТ 857-95,
Кислота азотная ГОСТ 701-89,
Вода дистиллированная по ГОСТ 6709-72,
Аммиак водный ГОСТ 3760-79.
Проведение процесса заявленным способом следующее. В бисерную мельницу вертикального типа с высокооборотной лопастной мешалкой вводят расчетные количества стеклянного бисера, дистиллированной воды, концентрированной минеральной кислоты и оксида меди (II). Включают механическое перемешивание и ведут процесс при 15-50°С и контроле за ходом методом отбора проб и определения в них содержаний накопившегося продукта и израсходованной кислоты. Как только содержания накопившегося продукта и израсходованной кислоты достигают своих максимальных, равных между собой и в дальнейшем практически неизменных значений, процесс прекращают. Реакционную смесь отделяют от стеклянного бисера путем фильтрования через сетку и далее подвергают фильтрованию. Отделенную твердую фазу промывают 0,2-0,5 моль/л раствором минеральной кислоты, после чего возвращают на загрузку повторного процесса. А жидкую фазу (фильтрат + промывной раствор) подвергают нейтрализации концентрированным раствором гидроксида аммония при рН-метрическом контроле таким образом, чтобы по всему ходу нейтрализации рН не превысил 7, а в конце оказался в диапазоне 6,5-7,1. Выпавшую твердую фазу оставляют для структурирования на 12-24 часа, после чего фильтруют. Осадок промывают дистиллированной водой, снова фильтруют, а затем сушат, определяют массу и характеристики качества. Фильтрат подвергают анализу на содержание растворенных соединений меди (II) и используют по целевому назначению.
Пример №1.
В толстостенный стеклянный стакан, как корпус бисерной мельницы вертикального типа внутренним диаметром 52,3 мм и высотой 153 мм с плоским дном и высокооборотной (1560 об/мин) лопастной мешалкой с лопастью из текстолита 51×49×3,1 мм, загружают 120 г стеклянного бисера, 9,6 г оксида меди (II), 98,4 г дистиллированной воды и 12 г концентрированной (10 моль/кг) соляной кислоты. Корпус бисерной мельницы помещают в предназначенное для него гнездо в каркасной раме, соединяют с крышкой из текстолита, в которой расположена сальниковая коробка и карманы для пробоотборника и измерения температуры. После этого мельницу должным образом крепят в обозначенном гнезде, проверяют вручную работу механической мешалки и подводят снизу стабилизирующую температуру водяную баню. Включают механическое перемешивание и этот момент принимают за начало процесса. Температура в зоне реакции 21°С. Процесс ведут таким образом, чтобы она не менялась более чем на 2°С в ту или иную сторону. По ходу процесса отбирают пробы реакционной смеси, в которых определяют содержание Cu2+-продукта, а также количества оставшейся и израсходованной на момент отбора пробы кислоты. Для данного процесса получено:
Поскольку, начиная с 20 мин, состав реакционной смеси остается неизменным, процесс прекращают. Для этого выключают механическое перемешивание, отводят в сторону поддерживающую температурный режим баню, снимают крепление бисерной мельницы в гнезде каркасной рамы, отсоединяют крышку от корпуса, снимают корпус и переносят в узел фильтрования. Сначала отделяют стеклянный бисер на сетке с размерами ячеек 0,3×0,3 мм в качестве фильтровальной перегородки. Его тщательно снимают с сетки и возвращают в корпус мельницы. Установку собирают вновь, вводят 30 г 0,5 моль/кг соляной кислоты, включают механическое перемешивание и в течение 3 мин отмывают бисер, а также поверхности корпуса, лопасти механической мешалки и ее вала от остатков реакционной смеси. Отмытый бисер повторно отделяют от промывной жидкости, которую собирают в отдельную емкость и используют в дальнейшей переработке реакционной смеси.
Суспензию PC фильтруют с использованием вакуума, оставшуюся твердую фазу переносят на фильтр с помощью фильтрата, осадок тщательно промывают полученной ранее промывной жидкостью, снова фильтруют, тщательно отжимают, снимают с фильтра и сушат, после чего направляют на загрузку повторного процесса. А полученный объединенный с промывной жидкостью фильтрат направляют на нейтрализацию содержащейся в нем соляной кислоты 2,5 моль/кг водным аммиаком. Нейтрализацию ведут дробным путем при интенсивном перемешивании и постоянном контроле рН. Последний по ходу не должен превышать 7. Нейтрализацию прекращают при рН 6,85. Полученную суспензию продукта оставляют на 20 часов с целью облегчения последующего фильтрования твердой фазы продукта. Само фильтрование проводят под вакуумом с последующей промывкой осадка на фильтре дистиллированной водой, снятием с фильтра и сушкой на воздухе до постоянной массы.
В данном примере получено сухого продукта 10,69 г. Атомно-адсорбционное определение меди в нем составляет 54,7±0,1%, что соответствует брутто-формуле Cu(ОН)Cl. Степень превращения реагентов в продукт ~76%. Селективность по продукту ~99%.
Примеры №2-10.
Реактор, масса загрузки, исходные реагенты, растворитель жидкой фазы, последовательность загрузки, пооперационная схема проведения процесса и текущего контроля за ним, отделение стеклянного бисера от полученной реакционной смеси, разделение фаз последней и выделение целевого продукта из них, а также работа с ним аналогичны описанным в примере 1. Отличается начальными дозировками оксида меди (II) и соляной кислоты, мольным соотношением оксид:кислота в начальной реакционной смеси, массовым соотношением реакционной смеси и стеклянного бисера, температурой проведения процесса, концентрациями соляной кислоты для промывки твердой фазы реакционной смеси и аммиака, используемого для нейтрализации непрореагировавшей кислоты, а также длительностью хранения суспензии продукта перед его фильтрованием и последующей обработкой. Указанные различия и другие характеристики сведены в таблице. (PC - реакционная смесь).
соляной кислоты на промывку твердой фазы РС, % по массе от начальной загрузки
Примеры №11-17.
Масса загрузки, исходные реагенты, растворитель жидкой фазы, последовательность загрузки компонентов, пооперационная схема проведения процесса и текущего контроля за ним, отделение стеклянного бисера от полученной реакционной смеси, разделение фаз реакционной смеси и выделений продукта из них аналогичны описанным в примере 1. Отличаются величинами дозировки реагентов, мольным соотношением CuO:HCl, типом используемого реактора, интенсивностью механического перемешивания в нем, концентрациями и количествами используемых для промывки твердой фазы PC и нейтрализации непрореагировавшей кислоты растворов HCl и водного аммиака. Указанные различия и другие характеристики сведены в таблице.
(MB - механический встряхиватель)
Пример №18.
Реактор, массы загрузки и загрузки CuO, мольное соотношение оксид:кислота в загрузке, последовательность загрузки, пооперационная схема проведения процесса и текущего контроля за ним, температура в начале и в конце, отделение стеклянного бисера от полученной реакционной смеси, разделение фаз реакционной смеси и выделение продукта из них, а также работа с ним аналогичны описанным в примере 1. Отличается использованием вместо соляной азотной кислоты. Ее загрузка в виде 8,9 моль/кг водного раствора 14,3 г. Загрузка дистиллированной воды 96,1 г. Кинетические характеристики процесса:
Сухого продукта получено 10,42 г или 96,4% от расчетного значения. Степень превращения реагентов в продукт 63%. Селективность по продукту ~99%. Содержание меди в твердом продукте по результатам атомно-адсорбционного определения 45% по массе, что отвечает брутто-формуле Cu(ОН)NO3.
Примеры №19-26.
Реактор, природа реагентов, масса и последовательность загрузки, пооперационная схема проведения процесса и текущего контроля за ним, отделение стеклянного бисера от полученной реакционной смеси, разделение фаз последней и выделения продуктов из них, а также работа с продуктом аналогичны описанным в примере 18. Отличаются начальными дозировками оксида меди (II) и азотной кислоты, мольными соотношениями оксид:кислота в начальной реакционной смеси, массовыми соотношениями стеклянного бисера и загрузки, температурой проведения процесса, концентрациями азотной кислоты для отмывки твердой фазы реакционной смеси и аммиака для нейтрализации непрореагировавшей кислоты, а также длительностью хранения суспензии продукта перед его фильтрованием и последующей обработкой. Указанные различия и другие характеристики сведены в таблице.
Положительный эффект предлагаемого решения состоит в том, что:
1. В предлагаемом решении имеет место 100% превращение масс исходных реагентов в целевые продукты Cu(ОН)Cl и Cu(ОН)NO3, т.е. в основные соли простейшей структуры, которые на данный момент времени получены электрохимическим и другими, гораздо более сложными и многостадийными способами.
2. Предлагаемое решение имеет довольно широкие диапазоны варьирования начальных содержаний оксида меди, рабочей кислоты и мольного соотношения количеств этих реагентов в исходной загрузке.
3. Аппаратурное оформление для его реализации довольно простое и представлено широким ассортиментом (от бисерной мельницы к аппарату с интенсивным механическим перемешиванием и далее к аппарату на платформе механического встряхивателя).
4. Процесс протекает быстро и селективно при комнатных температурах; в нем нет сильно экзотермических стадий, что существенно упрощает поддержание заданного температурного режима.
5. Процесс самопрекращается, что исключает поиск надежных критериев для отыскания момента прекращения процесса.
6. Выделение продукта простое, а образующиеся при этом сопутствующие продукты имеют свои области рационального использования.
название | год | авторы | номер документа |
---|---|---|---|
Двухстадийный способ получения карбоксилатов олова (II) из металла | 2017 |
|
RU2678092C1 |
СПОСОБ ПОЛУЧЕНИЯ ОСНОВНОГО АЦЕТАТА МЕДИ (II) | 2009 |
|
RU2424225C1 |
СПОСОБ ПОЛУЧЕНИЯ БЕНЗОАТА МАРГАНЦА (II) | 2008 |
|
RU2391332C1 |
Способ получения основного нитрата олова (IV) Sn(OH)(NO) | 2017 |
|
RU2680065C1 |
Способ получения бензоата и замещенных бензоатов олова (IV) | 2017 |
|
RU2660905C1 |
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА СВИНЦА (II) | 2008 |
|
RU2398758C1 |
Способ получения нитрата олова (II) при окислении металла | 2020 |
|
RU2744006C1 |
Способ получения карбоксилатов олова (II) | 2017 |
|
RU2671197C1 |
СПОСОБ ПОЛУЧЕНИЯ М-НИТРОБЕНЗОАТА МАРГАНЦА (II) | 2009 |
|
RU2412152C2 |
СПОСОБ ПОЛУЧЕНИЯ n-АМИНОБЕНЗОАТА МАРГАНЦА (II) | 2009 |
|
RU2414451C1 |
Изобретение относится к технологии получения солей меди (II). Способ включает прямое взаимодействие оксида металла с водными растворами соляной или азотной кислоты при интенсивном перемешивании, в том числе и в присутствии стеклянного бисера в качестве перетирающего агента. Процесс проводят при диапазоне начальных концентраций растворов кислот от 0,4 до 2,7 моль/кг и мольном соотношении с оксидом меди (II) в диапазоне от (0,8:1) и до (1,8:1), при массовом соотношении исходной загрузки и стеклянного бисера (1:0,2)÷(1:1), при температурах 15-50°С до момента самопрекращения процесса при текущем контроле за количеством накопившихся солей меди (II) и расходовавшейся на эти цели кислоты. После этого реакционную смесь отделяют от стеклянного бисера и фильтруют. Отделенную твердую фазу реакционной смеси промывают 0,2-0,5 моль/кг раствором кислоты-реагента, после чего возвращают на загрузку повторного процесса. А промывной раствор объединяют с фильтратом реакционной смеси. Полученную смесь нейтрализуют 1,2-3,3 моль/кг водным аммиаком, дозируемым малыми порциями таким образом, чтобы рН не превышал величины 6,5-7,1. Выпавшую при нейтрализации твердую фазу продукта оставляют в контакте с жидкой фазой на 12-24 часа, после чего фильтруют, промывают дистиллированной водой и сушат. А водный раствор хлорида или нитрата аммония используют по иному назначению. Способ обеспечивает высокую скорость получения и высокий выход основных солей при комнатных или близких к ним температурах. 5 табл., 26 пр.
Способ получения основного хлорида или нитрата меди (II) путем прямого взаимодействия оксида металла с водными растворами соляной или азотной кислоты при интенсивном перемешивании, в том числе и в присутствии стеклянного бисера в качестве перетирающего агента, отличающийся тем, что процесс проводят в присутствии жидкой фазы, представляющей собой водный раствор соляной или азотной кислоты в диапазоне начальных концентраций от 0,4 до 2,7 моль/кг и мольном соотношении с оксидом меди (II) от 0,8:1 и до 1,8:1 при массовом соотношении исходной загрузки и стеклянного бисера 1:0,2÷1:1 при температурах 15-50°С до момента самопрекращения процесса при текущем контроле за количеством накопившихся солей меди (II) и расходовавшейся на эти цели кислоты, после чего реакционную смесь отделяют от стеклянного бисера и фильтруют, отделенную твердую фазу промывают 0,2-0,5 моль/кг раствором кислоты-реагента и возвращают на загрузку повторного процесса, а промывной раствор объединяют с фильтратом реакционной смеси, полученную смесь нейтрализуют 1,2-3,3 моль/кг водным аммиаком, дозируемым малыми порциями таким образом, чтобы рН не превышал величины 6,5-7,1, выпавшую при нейтрализации твердую фазу продукта оставляют в контакте с жидкой фазой на 12-24 ч, после чего фильтруют, промывают дистиллированной водой и сушат.
Труба для краски | 1933 |
|
SU36232A1 |
Ограничитель грузоподъемности стрелового крана | 1959 |
|
SU123304A1 |
US 7462342 B2, 09.12.2008 | |||
СПОСОБ ПОЛУЧЕНИЯ ХЛОРОКИСИ МЕДИ | 1992 |
|
RU2051104C1 |
Способ получения основного оксихлорида меди (II) | 1988 |
|
SU1699924A1 |
Авторы
Даты
2013-02-27—Публикация
2011-08-04—Подача