СПОСОБ ПОЛУЧЕНИЯ ОСНОВНОГО АЦЕТАТА МЕДИ (II) Российский патент 2011 года по МПК C07C53/10 

Описание патента на изобретение RU2424225C1

Изобретение относится к технологии получения солей меди (II) и может быть использовано в различных областях химической и иных видов практики, в научных исследованиях и в аналитическом контроле.

Известно получение основного ацетата меди (II) (ярь-медянка) Cu(OH)2·(CH3COO)2Cu·nH2O (И.Л.Кнунянц. Химическая энциклопедия. Т.2. М.: Советская энциклопедия, 1990, с.671) путем взаимодействия меди, оксида меди (II), гидроксида меди (II) или основных карбонатов меди с уксусной кислотой в присутствии воздуха.

Недостатками данного способа являются:

1. Окислительно-восстановительный процесс (медь - восстановитель, кислород - окислитель) в присутствии оксида, гидроксида или основных карбонатов меди (II) сложен и трудноуправляем. По крайней мере некоторые из соединений загрузки (в частности, гидроксид и основные карбонаты) способны непосредственно взаимодействовать с кислотой с образованием обозначенного продукта. Такое совмещение процессов ничем не обосновано и в части целесообразности совсем не очевидно.

2. Рассматриваемый процесс никак не определен в плане природы и количества жидкой фазы, а также реактора, в котором его проводят.

3. Нет никакой ясности в мольных соотношениях медьсодержащих и иных реагентов в исходной загрузке, в путях управления процессом, относительно глубины его протекания, в способах выделения и очистки целевого продукта.

Наиболее близким к заявляемому является способ трибохимического получения металлсодержащих мыл-компонентов жирующих смесей (патент РФ №2092533, опубл. 10.10.1997, БИ №28), в соответствии с которым соли переходных и иных металлов получают путем прямого взаимодействия оксидов, гидроксидов и карбонатов металлов I-VIII групп Периодической системы с С7 и выше карбоновыми кислотами как индивидуально, так и в виде содержащих эти кислоты композиций и отходов, в присутствии масляной составляющей и растворителя в условиях тонкого измельчения твердой фазы системы по ходу процесса в бисерной мельнице при 20-60°C в течение 10-40 мин в присутствии 1-2% по массе воды и 0,05-0,1% по массе трибохимического катализатора, в качестве которого используют азотсодержащие соединения, лучшими из которых являются нитраты аммония и щелочных металлов, вторичные и третичные амины и амиды кислот. При этом в качестве растворителя используют парафиновые и ароматические углеводороды, их технические смеси и масло ПОД. В него вводят масляную составляющую, жидкие компоненты кислотсодержащих композиций, воду и трибохимический катализатор и при интенсивном перемешивании все перечисленное превращают в раствор, в который дозируют металлсодержащий реагент, и ведут процесс получения целевого продукта.

Недостатками данного способа являются:

1. В нем используются С7 и выше, т.е. довольно высокомолекулярные карбоновые кислоты. Совсем не очевидно, что приведенные условия проведения процесса будут приемлемы для аналогичных реакций с более низкомолекулярными кислотами.

2. В цитируемом способе нет окислительно-восстановительных превращений. Вместе с тем указано ограничение на молекулярную массу карбоновой кислоты. Не исключено, что аналогичные превращения с более низкомолекулярными кислотами возможны лишь при параллельном протекании соответствующего окислительно-восстановительного превращения, как это предлагается в рассматриваемом выше аналоге. Такое предположение не очевидно и требует экспериментального подтверждения или же надежного опровержения.

3. В рассматриваемом способе в качестве растворителя жидкой фазы используют парафиновые или ароматические углеводороды, а также их технические смеси. Нет никаких оснований считать, что эти растворители окажутся благоприятными при переходе к более низкомолекулярным кислотам в качестве реагентов для взаимодействия с оксидами, гидрооксидами и карбонатами металлов, включая и медь.

4. То же самое можно сказать и о природе, и количестве трибохимического катализатора или стимулирующей добавки.

5. Переход к более низкомолекулярным кислотам как реагентам может существенно повлиять и на целесообразность ввода добавок воды в начальную реакционную смесь. Тем более, когда не ясно, должна ли вводимая вода хотя бы частично находиться в виде самостоятельной, пусть и весьма малой по объему фазы, либо она должна полностью перейти в раствор и влиять на растворимость трибохимического катализатора и иных компонентов в нем.

6. То же самое можно полагать и в отношении масляной составляющей исходной загрузки. Не исключено, что ее ввод нужен с точки зрения получения компонентов жирующих композиций. А изменение области использования получаемых таким путем солей на иные может автоматически сделать масляную составляющую практически ненужной и полностью исключить из исходной загрузки.

Задачей предлагаемого решения является подбор таких условий проведения процесса взаимодействия оксида меди (II) с уксусной кислотой, которые бы обеспечили при комнатной и близких к ней температурах высокие выход и избирательность, а также приемлемые для практических целей скорости получения основного ацетата меди (II).

Поставленная задача достигается тем, что процесс проводят в присутствии жидкой фазы, растворителем которой является дистиллированная вода, оксид меди загружают в количестве (1,8:3,3) моль/кг в мольном соотношении с уксусной кислотой (1:1,7)÷(1:2,1), стимулирующую добавку дозируют в количестве 0,05 моль/кг, загрузку проводят в следующей последовательности: стеклянный бисер, вода, уксусная кислота, стимулирующая добавка и оксид меди (II) при массовом соотношении стеклянного бисера и остальной загрузки (1:1)÷(1,5:1), далее включают механическое перемешивание и ведут процесс при непрерывном охлаждении в диапазоне температур 20-45°C до практически полного расходования загруженного оксида меди (II) в соль, после чего перемешивание и охлаждение прекращают, отделяют суспензию реакционной смеси от стеклянного бисера, эту суспензию смешивают с промывной водой с остатками реакционной смеси, оставляют на 1,0-2,5 часа и фильтруют, осадок продукта тщательно отжимают и направляют на очистку путем перекристаллизации, а фильтрат возвращают на загрузку повторного процесса.

При этом в качестве стимулирующей добавки используют молекулярный йод, йодид или бромид калия, хлорид бария или тиомочевину.

Характеристика используемого сырья:

Оксид меди (II) по ГОСТ 16539-79,

Уксусная кислота ледяная по ГОСТ 61-75,

Вода дистиллированная по ГОСТ 6709-72,

Йод кристаллический по ГОСТ 4159-79,

Йодид калия по ГОСТ 4232-74,

Бромид калия по ГОСТ 4160-74,

Хлорид бария по ГОСТ 4108-72,

Тиомочевина по ГОСТ 6344-73.

Проведение процесса заявленным способом следующее. В бисерную мельницу вертикального типа, снабженную обратным холодильником-конденсатором, высокооборотной лопастной мешалкой и охлаждающей водяной баней, легко перемещаемой вдоль продольной оси реактора, вводят расчетные количества стеклянного бисера, дистиллированной воды, уксусной кислоты, стимулирующей добавки и оксида меди (II) различного происхождения. Включают механическое перемешивание, подводят водяную охлаждающую баню таким образом, чтобы в нее погрузился корпус реактора не менее 1/2 своей высоты, и подают охлаждающую воду в обратный холодильник-конденсатор. Процесс ведут таким образом, чтобы температура реакционной смеси не превышала 45°C. Контроль за ходом протекания осуществляют методом отбора проб и определения в них содержаний накопившегося продукта. Как только степень расходования оксида меди (II) превысит 98%, процесс прекращают путем остановки механического перемешивания. Выключают подачу охлаждающей воды в обратный холодильник-конденсатор, опускают вниз охлаждающую баню таким образом, чтобы корпус реактора оказался вне ее. Отсоединяют корпус реактора от его крышки и опускают вниз до каркасной рамы таким образом, чтобы нижняя кромка лопастной мешалки оказалась выше уровня реакционной смеси в корпусе реактора. В таком положении оставляют реактор на некоторое время, давая возможность остаткам реакционной смеси стечь с лопасти и вала мешалки.

Далее корпус реактора вынимают из гнезда каркасной рамы, а его содержимое выливают в приемную воронку узла отделения суспензии реакционной смеси от стеклянного бисера с сеткой с размерами ячеек 0,3×0,3 мм в качестве фильтровальной перегородки. Оставшейся на сетке бисер аккуратно снимают и возвращают в корпус реактора. Последний помещают в свое гнездо в каркасной раме, соединяют с крышкой и проводят все необходимые операции по сборке установки в рабочее положение. Далее вводят некоторое количество дистиллированной воды, включают механическое перемешивание и проводят отмывку бисера и внутренних поверхностей корпуса лопасти и вала и прочих элементов реактора от остатков реакционной смеси. После завершения этой операции перемешивание прекращают и проводят повторное отделение бисера от промывного растворителя, собирая последний в емкость с ранее отделенной суспензией реакционной смеси. Суспензию и промывной растворитель тщательно перемешивают и оставляют стоять 1,5-2 часа, после чего проводят фильтрование. Осадок продукта на фильтре тщательно отжимают и направляют на очистку путем перекристаллизации, а фильтрат анализируют и возвращают на загрузку повторного процесса.

Пример 1

В бисерную мельницу вертикального типа со стеклянным корпусом в виде толстостенного стакана внутренним диаметром 52,1 мм и высотой 129 мм с плоским дном и высокооборотной лопастной мешалкой (1560 об/мин) с лопастью из текстолита 51×49×3,5 мм, снабженную обратным холодильником-конденсатором, карманами для пробоотборника и измерения температуры (выход на обратный холодильник-конденсатор и указанные карманы, как и сальниковая коробка для мешалки, расположены в толстостенной крышке мельницы из текстолита), а также легко перемещаемой вдоль продольной оси реактора охлаждающей водяной баней с проточной холодной водой, последовательно загружают 100 г стеклянного бисера, 46,5 г дистиллированной воды, 19,7 г уксусной кислоты, 1 г йода и 12,8 г оксида меди (II). Корпус реактора помещают в свое гнездо в каркасной раме, соединяют с крышкой реактора, проверяют прокручивание вала мешалки, подводят снизу охлаждающую баню таким образом, чтобы корпус мельницы оказался погруженным на 0,8-0,9 своей высоты, подают охлаждающую воду в баню и в обратный холодильник-конденсатор, включают механическое перемешивание и этот момент принимают за начало процесса. Исходная температура реакционной смеси 21°C. Процесс ведут таким образом, чтобы температура реакционной смеси не превышала 45°C, что достигается изменением степени погружения корпуса реактора в охлаждающую баню и варьированием расхода охлаждающей воды. По ходу процесса без прекращения механического перемешивания отбирают пробы реакционной смеси, в которых определяют содержание накопившегося основного ацетата меди (II) и оставшейся уксусной кислоты. На основе этих данных строят зависимость выхода продукта от времени протекания процесса. В данном примере эти данные сведены в таблицу 1.

Таблица 1

Выход продукта в % от теоретического 25 50 75 96,5 Время достижения, мин 90 160 220 300 Температура реакционной смеси в указанный момент, °C 28 35 42 36

По достижении по результатам анализа превышающего 96,5% выхода продукта процесс его получения прекращают, останавливают механическое перемешивание бисерной мельницы, прекращают подачу охлаждающей воды в обратный холодильник-конденсатор и баню, последнюю опускают вниз, пока весь корпус реактора не окажется выше, отсоединяют корпус от крышки и опускают его вниз таким образом, чтобы нижняя крышка лопасти мешалки оказалась над реакционной смесью. В таком положении выдерживают 3 мин, давая возможность реакционной смеси стечь с поверхностей лопасти и вала мешалки. После этого корпус с бисером и реакционной смесью вынимают из гнезда реактора и его содержание выливают в воронку для отделения реакционной смеси от стеклянного бисера с сеткой с размерами ячеек 0,3×0,3 мм в качестве фильтровальной перегородки. Бисер тщательно снимают с сетки и возвращают в корпус реактора. Установку собирают вновь, вводят 30 г дистиллированной воды включают механическое перемешивание и в течение 10 мин проводят отмывку бисера, а также поверхностей корпуса, мешалки и ее вала от остатков реакционной смеси. По истечении указанного времени перемешивание прекращают и проводят повторное отделение бисера от промывной воды с остатками реакционной смеси. Промывной растворитель собирают в емкость, где находится ранее отделенная суспензия реакционной смеси. Содержимое этой емкости тщательно перемешивают и оставляют стоять в течение 1,5 часа, после чего фильтруют. Осадок тщательно отжимают на фильтре, аккуратно снимают и направляют на очистку путем перекристаллизации. Выход твердого продукта составил 92% от теоретического значения. Осадок аккуратно отжимают, снимают с фильтра и направляют на очистку путем перекристаллизации.

Полученный фильтрат взвешивают, определяют содержание в нем соли-продукта, уксусной кислоты и стимулирующей добавки, а также продуктов ее превращения и возвращают на загрузку повторного процесса. Количество возвращенного с ним продукта составило 4,2%.

Пример 2-9

Реактор, исходные реагенты, растворитель жидкой фазы, количество стимулирующей добавки, масса загрузки, последовательности операций при загрузке реакционной смеси, проведение процесса, его завершение, отделение реакционной смеси от бисера, отмывки бисера и внутренних элементов реактора от остатков реакционной смеси, выделение из последней твердого продукта и возврат фильтрата на загрузку повторного процесса аналогичны описанным в примере 1. Отличается величиной загрузки оксида меди (II), мольным соотношением оксида меди (II) и уксусной кислоты в исходной загрузке, массовым соотношением загрузки и стеклянного бисера, природой используемой стимулирующей добавки и верхней границей рабочего диапазона температур. Указанные различия и другие характеристики сведены в таблице 2 (PC - реакционная смесь).

Таблица 2

Характеристики загрузки и проводимого процесса Пример 2 3 4 5 6 7 8 9 Дозировка оксида меди (II), моль/кг 1,8 2,5 3,0 3,3 2,0 2,0 2,0 2,0 Мольное соотношение CuO и CH3COOH в исходной загрузке 1:2,1 1:1,7 1:1,9 1:1,7 1:2,0 1:2,0 1:2,0 1:2,0 Природа стимулирующей добавки йод йод йод йод йодид калия бромид калия хлорид бария тиомочевина Массовое соотношение стеклянного бисера и остальной загрузки 1,5:1 1,25:1 1,25:1 1,25:1 1,3:1 1,4:1 1:1 1,25:1 Температура PC, °C: начальная 20 21 22 22 21 20 20 20 максимальная 39 42 44 45 41 42 41 43 Время достижения выхода продукта, % от теоретического; мин 25 130 70 50 40 100 80 40 85 50 225 130 110 95 180 155 80 165 75 300 200 170 155 280 240 130 260 95 и более ( ) (98) 365 (97) 280 (97) 225 (98) 210 (97) 390 (97) 330 (98) 200 (97) 350 Длительность стекания остатков PC с лопасти и вала мешалки, мин 3 4 5 5 4 4 3 5 Масса введенной дистиллированной воды на отмывку бисера и элементов реактора от остатков PC, г 30 40 40 45 35 35 35 35 Длительность отмывки бисера и элементов реактора от остатков PC, мин 10 12 13 13 9 8 10 10 Выдержка смеси суспензии PC и промывной воды перед фильтрованием, час 1,0 1,5 2,0 2,5 1,5 1,5 1,5 1,5 Выход отделенного твердого продукта в % от теоретического 90 92 93 93 91 91 91 90 Возврат продукта с фильтратом на загрузку повторного процесса, % от полученного 5,1 4,3 3,9 3,7 4,8 4,6 4,8 4,5

Положительный эффект предлагаемого решения состоит в:

1. В предлагаемом процессе достигается высокий процент перехода масс исходных реагентов в массу целевого продукта. Побочными продуктами являются средняя соль меди (II) и вода как результат дальнейшего взаимодействия продукта с избыточной уксусной кислотой. Но этот процесс в рассматриваемых условиях удается в значительной мере замедлить, что предопределяет их небольшой выход. К тому же продукт-вода не является примесью и загрязнением.

2. В предлагаемом решении основная масса продукта накапливается в виде суспензированной твердой фазы и отделяется путем простого фильтрования.

3. Смешивание суспензии реакционной смеси с промывной водой приводит к уменьшению растворимости продукта примерно в два раза за счет снижения концентрации остаточной уксусной кислоты, что благоприятствует переходу в твердую фазу дополнительных количеств продукта.

4. Процесс проводится при низких температурах и не требует использования котлонадзорного оборудования.

5. В качестве реагентов возможно использование оксида меди природного происхождения и относительно разбавленной уксусной кислоты.

6. Процесс не осложнен переработкой жидких фаз конечной реакционной смеси и промывного растворителя.

Похожие патенты RU2424225C1

название год авторы номер документа
Способ получения карбоксилатов олова (II) 2017
  • Иванов Анатолий Михайлович
  • Агеева Лилия Сергеевна
  • Пожидаева Светлана Дмитриевна
RU2671197C1
Способ получения ацетата или оксалата свинца из его оксида (II) 2023
  • Пожидаева Светлана Дмитриевна
  • Латыпова Александра Вячеславовна
RU2807759C1
Способ получения основного бензоата олова (II) 2017
  • Иванов Анатолий Михайлович
  • Агеева Лилия Сергеевна
  • Пожидаева Светлана Дмитриевна
RU2650893C1
СПОСОБ ПОЛУЧЕНИЯ ФОРМИАТА ЦИНКА 2014
  • Иванов Анатолий Михайлович
  • Макеева Татьяна Владимировна
RU2567384C1
СПОСОБ ПОЛУЧЕНИЯ БЕНЗОАТА МАРГАНЦА (II) 2008
  • Иванов Анатолий Михайлович
  • Пожидаева Светлана Дмитриевна
  • Маякова Татьяна Александровна
RU2391332C1
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА СВИНЦА (II) 2008
  • Иванов Анатолий Михайлович
  • Пожидаева Светлана Дмитриевна
  • Маякова Татьяна Александровна
  • Спицына Наталья Александровна
RU2398758C1
СПОСОБ ПОЛУЧЕНИЯ М-НИТРОБЕНЗОАТА МАРГАНЦА (II) 2009
  • Иванов Анатолий Михайлович
  • Пожидаева Светлана Дмитриевна
  • Маякова Татьяна Александровна
  • Пашкова Лариса Юрьевна
RU2412152C2
Способ получения нитрата олова (II) при окислении металла 2020
  • Иванов Анатолий Михайлович
  • Пожидаева Светлана Дмитриевна
  • Омарова Эльвира Махачевна
RU2744006C1
Способ получения нитрата олова (IV) путем окисления нитрата олова (II) 2019
  • Иванов Анатолий Михайлович
  • Пожидаева Светлана Дмитриевна
  • Родионова Мария Сергеевна
RU2717810C1
СПОСОБ ПОЛУЧЕНИЯ БЕНЗОАТА ЖЕЛЕЗА (III) 2007
  • Иванов Анатолий Михайлович
  • Гречушников Евгений Александрович
RU2326861C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ОСНОВНОГО АЦЕТАТА МЕДИ (II)

Изобретение относится к способу получения основного ацетата меди (II). Способ включает взаимодействие оксида металла с кислотой в бисерной мельнице в присутствии стимулирующей добавки. Процесс проводят в присутствии жидкой фазы, растворителем которой является дистиллированная вода, оксид меди загружают в количестве 1,8-3,3 моль/кг в мольном соотношении с уксусной кислотой (1:1,7)÷(1:2,1), стимулирующую добавку дозируют в количестве 0,05 моль/кг. Загрузку проводят в следующей последовательности: стеклянный бисер, растворитель жидкой фазы, уксусная кислота, стимулирующая добавка и оксид меди (II) при массовом соотношении стеклянного бисера и остальной загрузки (1:1)÷(1,5:1). Далее включают механическое перемешивание и ведут процесс при непрерывном охлаждении в диапазоне температур 20-45°С до практически полного расходования загруженного оксида меди (II) в соль. После чего перемешивание и охлаждение прекращают, отделяют суспензию реакционной смеси от стеклянного бисера, эту суспензию смешивают с промывной водой с остатками реакционной смеси, оставляют на 1-2,5 часа, фильтруют, осадок продукта тщательно отжимают и направляют на очистку путем перекристаллизации, а фильтрат возвращают на загрузку повторного процесса. Технический результат - изобретение позволяет повысить выход и избирательность способа получения ацетата меди (II). 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 424 225 C1

1. Способ получения основного ацетата меди (II) путем прямого взаимодействия оксида металла с кислотой в бисерной мельнице в присутствии стимулирующей добавки, отличающийся тем, что процесс проводят в присутствии жидкой фазы, растворителем которой является дистиллированная вода, оксид меди загружают в количестве 1,8-3,3 моль/кг в мольном соотношении с уксусной кислотой (1:1,7)÷(1:2,1), стимулирующую добавку дозируют в количестве 0,05 моль/кг, загрузку проводят в следующей последовательности: стеклянный бисер, растворитель жидкой фазы, уксусная кислота, стимулирующая добавка и оксид меди (II) при массовом соотношении стеклянного бисера и остальной загрузки (1:1)÷(1,5:1), далее включают механическое перемешивание и ведут процесс при непрерывном охлаждении в диапазоне температур 20-45°С до практически полного расходования загруженного оксида меди (II) в соль, после чего перемешивание и охлаждение прекращают, отделяют суспензию реакционной смеси от стеклянного бисера, эту суспензию смешивают с промывной водой с остатками реакционной смеси, оставляют на 1-2,5 ч, фильтруют, осадок продукта тщательно отжимают и направляют на очистку путем перекристаллизации, а фильтрат возвращают на загрузку повторного процесса.

2. Способ по п.1, отличающийся тем, что в качестве стимулирующей добавки используют молекулярный йод, йодид или бромид калия, хлорид бария или тиомочевину.

Документы, цитированные в отчете о поиске Патент 2011 года RU2424225C1

СПОСОБ ТРИБОХИМИЧЕСКОГО ПОЛУЧЕНИЯ МЕТАЛЛСОДЕРЖАЩИХ МЫЛ - КОМПОНЕНТОВ ЖИРУЮЩИХ СМЕСЕЙ 1995
  • Иванов А.М.
  • Елькова Н.Н.
  • Лучкина Л.В.
  • Иванов И.А.
  • Аболмасова Н.Н.
RU2092533C1
Способ получения ацетатов двухвалентных меди,никеля или кобальта 1982
  • Набойченко Станислав Степанович
  • Лебедь Андрей Борисович
  • Харитиди Эльвира Закиевна
  • Худяков Иван Федорович
  • Плеханов Константин Анатольевич
  • Серебрякова Лидия Николаевна
  • Журавлев Виктор Дмитриевич
SU1097604A1
CN 101429110 A, 13.05.2009
WO 9610553 A1, 11.04.1996
СПОСОБ ПОЛУЧЕНИЯ МОНОГИДРАТА АЦЕТАТА МЕДИ (II) 2003
  • Афонин Е.Г.
RU2246480C1

RU 2 424 225 C1

Авторы

Иванов Анатолий Михайлович

Пожидаева Светлана Дмитриевна

Маякова Татьяна Александровна

Даты

2011-07-20Публикация

2009-10-21Подача