СПОСОБ ПРОИЗВОДСТВА СЛИТКОВ ДЕФОРМИРУЕМЫХ МАГНИЕВЫХ СПЛАВОВ Российский патент 2013 года по МПК B22D7/00 

Описание патента на изобретение RU2479376C1

Изобретение относится к области металлургии и может быть использовано в производстве слитков из сплавов системы магний - алюминий - цинк, магний - цинк - РЗМ, предназначенных, например, для изготовления деталей разгонных блоков космических аппаратов.

Известен способ производства слитков магниевых сплавов, являющийся аналогом и включающий плавку шихтовых материалов под карналлитовым флюсом, состоящим из 60 атом.% MgCl2 и 40 атом.% CaCl2 (Бондарев Б.И. «Плавка и литье магниевых деформируемых сплавов», Металлургиздат, 1973, 370 с.). Применение такого флюса позволяет получать слитки с требуемой мелкокристаллической структурой.

Однако магниевые деформируемые сплавы при применении карналлитового флюса склонны к коррозии, что снижает качество и срок службы деталей, изготовленных из таких сплавов. Это связано с тем, что наряду с дисперсными частицами хлористого магния, которые служат центрами кристаллизации, в металлический расплав попадает большое количество крупных частиц этого материала, приводящих к «флюсовой» коррозии сплавов.

Известен способ производства слитков магниевых сплавов, принятый в данном случае за прототип (патент на изобретение №2190679 от 23.05.2002 г. «Способ производства слитков из магниевых сплавов»). Описанный способ производства позволяет исключить флюсовую коррозию за счет ведения плавки в среде смеси газов аргона и фреона при их соотношении 4:(1-2). В результате химической реакции между металлом и фреоном образуется защитная пленка, состоящая из фторида и хлорида магния, которая препятствует испарению сплава и окислению металла.

Однако слитки деформируемых магниевых сплавов системы магний - алюминий - цинк и магний - цинк - РЗМ, выплавленные по этому способу, обладают крупнокристаллической структурой, что приводит к снижению технологической пластичности и образованию трещин при прокатке и прессовании слитков. Это связано с тем, что принятые режимы приготовления сплавов не позволяют в полной мере использовать модифицирующую способность хлорида магния применительно к деформируемым магниевым сплавам, в частности к сплавам названных систем.

У деформируемых магниевых сплавов и у хлорида магния однотипная гексогональная решетка с близкими параметрами. Поэтому зародыши хлорида магния и включения, покрытые хлоридом магния, при охлаждении расплава до температуры, меньшей или равной температуре ликвидуса магниевых сплавов, становятся центрами кристаллизации. Чем больше центров кристаллизации, тем меньше размер зерен твердого раствора деформируемых магниевых сплавов. При этом микрочастицы хлорида магния, служившие центрами кристаллизации настолько малы, что практически не влияют на коррозионную стойкость деформируемых магниевых сплавов, к тому же они находятся в центре зерен сплава и недоступны воздействию атмосферы.

Результатом предлагаемого технического решения является получение слитков из деформируемых магниевых сплавов, не подверженных флюсовой коррозии и гарантированно имеющих мелкокристаллическую структуру.

Указанный результат достигается тем, что в предлагаемом способе производства слитков деформируемых магниевых сплавов, включающем индукционную плавку шихтовых материалов в стальном тигле в газовой среде в виде смеси аргона и фреона 12 в соотношении 4:(1-2) и разливку металла в кристаллизатор, расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40 минут.

Фреон 12 взаимодействует с расплавленным металлом, образуя на его поверхности жидкую защитную пленку из фтористого и хлористого магния. При повышении температуры расплава до 800°C и выше хлор из пленки переходит в металл, растворяясь в нем. При охлаждении расплава, происходящего в процессе отливки слитков, растворимость хлора в металлическом расплаве уменьшается, и он частично переходит обратно в пленку, но в большей части образует в расплаве самостоятельные микрокапли хлорида магния, либо образует на присутствующих в расплаве включениях жидкие микропленки. При понижении температуры расплава ниже 714°C микрокапли и пленки хлорида магния кристаллизуются, образуется большое количество центров кристаллизации, что и обеспечивает в итоге формирование мелкокристаллической структуры слитков магниевых сплавов, отливаемых предлагаемым способом.

Количество центров кристаллизации определяется концентрацией хлора, растворившегося в металле в процессе выдержки расплава при температуре, равной или большей 800°C. С ростом температуры растворимость хлора в магниевых сплавах растет. Однако верхний предел температуры ограничен 830°C, т.к. при более высоких температурах расплав активно насыщается железом за счет взаимодействия магниевого расплава со стенками тигля. Железо является вредной примесью для деформированных магниевых сплавов, повышенное его содержание приводит к снижению пластических и коррозионных характеристик изделий. Таким образом перегревать расплав выше температуры 830°C не целесообразно.

Минимальное время выдержки при температуре расплава 800-830°C определяется экспериментально и зависит от допустимого размера зерна в структуре сплава, при которой не образуется трещин в процессе деформации слитка. Увеличение же времени выдержки более 40 минут приводит к образованию излишне большого количества частиц хлорида магния. В результате за счет коагуляции происходит увеличение их размеров, такие частицы не могут служить центрами кристаллизации, а появляются в структуре как инородные включения, что, в конечном счете, приводит к «флюсовой» коррозии. Таким образом, предлагаемый способ производства слитков из деформируемых магниевых сплавов систем Mg-Al-Zn и Mg-Zn-РЗМ позволяет:

- получать слитки с гарантированно мелкокристаллической структурой;

- исключить «флюсовую» коррозию металла.

Примеры осуществления способа.

1. Для приготовления сплава МА2-1пч (система Mg-Al-Zn) была взята шихта следующего состава: первичный магний МГ95, лигатура магний-марганец ММ2ч, алюминий первичный А99, цинк Ц0А. Шихту укладывали в стальной тигель индукционной печи и нагревали до 830°C в защитной газовой среде смеси аргона и фреона-12 в соотношении 4:1 (по объему), сплав выдержали 20 мин. Затем отобрали пробу для экспресс-контроля и оценки размера зерна по излому. Размер зерна по излому соответствовал требованиям эталона, поэтому была проведена отливка слитка диаметром 370 мм методом полунепрерывного литья. Для сдаточного контроля был проведен контроль слитка по излому темплетов. Излом темплетов показал соответствие размера зерна эталону годности, химический состав сплава соответствовал ГОСТ 14957-76 (Рис.1а).

2. Сплав готовили по п.1 с той разницей, что шихту нагревали до 795°C. Отобранная для оценки размера зерна по излому проба показала несоответствие требованиям эталона (Рис.1б).

3. Сплав готовили по п.1 с разницей в том, что шихту нагревали до 835°C. Проба, отобранная для оценки размера зерна по излому, показала соответствие требованиям эталона годности (Рис.1а). Однако химический анализ показал увеличение содержания железа до недопустимого уровня 0,14% (против 0,005% по ГОСТ 14957-76).

4. Сплав МА15 (система Mg-Al-Zn) готовили из шихты следующего состава: первичный магний МГ95, лигатура магний-марганец ММ2ч, алюминий первичный А99, цинк Ц0А. Шихту в стальном тигле индукционной печи нагревали до 800°C в защитной среде аргона и фреона-12 в соотношении 4:1 (по объему), сплав выдержали 40 мин. Отобрали пробу на экспресс-анализ и оценку размера зерна по излому. Размер зерна по излому соответствовал требованиям эталона, химический состав сплава соответствовал ГОСТ 14957-76. Полунепрерывным способом был отлит слиток диаметром 460 мм. Для сдаточного контроля был проведен контроль слитка по излому темплетов. Излом темплетов показал соответствие размера зерна эталону годности (Рис.1а).

5. Сплав готовили по п.4 с той разницей, что выдержку сплава в печи осуществляли в течение 18 мин при 800°C. Размер зерна по излому в отобранной пробе не соответствовал требованиям эталона. При той же температуре печи сплав дополнительно выдержали в течение 10 мин. Повторно отобранная проба показала соответствие размера зерна эталону годности. Полунепрерывным методом отлили слиток диаметром 370 мм. Излом темплетов показал соответствие размера зерна эталону годности (Рис.1а).

Похожие патенты RU2479376C1

название год авторы номер документа
СПОСОБ ПЛАВКИ И ЛИТЬЯ МАГНИЕВО-ЦИРКОНИЕВЫХ СПЛАВОВ 2015
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Мухина Инна Юрьевна
  • Дуюнова Виктория Александровна
  • Уридия Зинаида Петровна
RU2601718C1
СПОСОБ ПРОИЗВОДСТВА СЛИТКОВ МАГНИЕВЫХ СПЛАВОВ 2001
  • Бондарев Б.И.
  • Бондарев А.Б.
RU2190679C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛ МАГНИЯ ИЛИ МАГНИЕВЫХ СПЛАВОВ 2012
  • Авдюхин Сергей Павлович
  • Лебедева Татьяна Ивановна
  • Мостяев Игорь Владимирович
  • Авдюхина Анастасия Алексеевна
RU2489229C1
Способ получения гранул магниевых сплавов 2015
  • Бондарев Борис Иванович
  • Бондарев Андрей Борисович
  • Лукьянова Светлана Николаевна
RU2612869C1
Способ модифицирования магниевых сплавов системы Mg-Al-Zn-Mn 2015
  • Бобрышев Борис Леонидович
  • Моисеев Виктор Сергеевич
  • Ряховский Александр Павлович
  • Попков Денис Владимирович
  • Бобрышев Данила Борисович
  • Моисеев Кирилл Викторович
  • Мухаметов Ахмет Абдул-Хакович
  • Мухина Инна Юрьевна
  • Тимошкин Борис Григорьевич
  • Кошелев Олег Викторович
  • Бережной Дмитрий Васильевич
  • Рогов Михаил Анатольевич
RU2623965C2
Способ получения отливок из магниевоалюминиевых сплавов 1976
  • Сарычихин Николай Алексеевич
  • Альтман Мориц Борисович
  • Лебедев Александр Александрович
  • Мухина Инна Юрьевна
  • Нейфак Елена Владимировна
  • Гончаров Владислав Васильевич
  • Табунов Сергей Александрович
  • Чистякова Елена Ивановна
SU624701A1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ АЛЮМИНИЙ-ТИТАНОВОЙ ЛИГАТУРЫ ДЛЯ КОРРОЗИОННОСТОЙКИХ АЛЮМИНИЕВЫХ СПЛАВОВ 2013
  • Елшина Людмила Августовна
RU2537676C1
СПОСОБ ПРИГОТОВЛЕНИЯ МАГНИЯ И ЕГО СПЛАВОВ В ОТКРЫТЫХ ПЕЧАХ 1999
  • Якимов В.И.
  • Калинин А.Т.
  • Якимов А.В.
RU2154689C1
Способ получения термически неупрочняемого конструкционного материала из сплава на основе алюминия с содержанием магния 2019
  • Анисимов Олег Владимирович
  • Анисимов Дмитрий Олегович
  • Осипов Юрий Иванович
  • Ткачев Сергей Семенович
RU2706262C1
СПОСОБ МОДИФИЦИРОВАНИЯ МАГНИЕВО-АЛЮМИНИЕВЫХ СПЛАВОВ 1986
  • Мухина И.Ю.
  • Заварзин И.А.
  • Дмитриева Р.В.
  • Старикова А.А.
  • Сарычихин Н.А.
  • Тутер С.К.
  • Степанов В.В.
  • Фридляндер И.Н.
  • Ликин В.Л.
  • Алиева С.Г.
SU1431346A1

Иллюстрации к изобретению RU 2 479 376 C1

Реферат патента 2013 года СПОСОБ ПРОИЗВОДСТВА СЛИТКОВ ДЕФОРМИРУЕМЫХ МАГНИЕВЫХ СПЛАВОВ

Изобретение относится к области металлургии. Индукционную плавку шихтовых материалов ведут в стальном тигле в газовой среде, состоящей из смеси аргона и фреона 12 в соотношении 4:(1-2). Расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40 минут. Образующийся в результате реакции фреона с магнием хлорид магния (MgCl2) растворяется в магниевом расплаве, а при охлаждении выделяется в виде тонкодисперсных частиц, служащих центрами кристаллизации. Обеспечивается получение слитков с гарантированно мелкокристаллической структурой и исключение «флюсовой» коррозии металла. 1 ил., 5 пр.

Формула изобретения RU 2 479 376 C1

Способ производства слитков деформируемых магниевых сплавов, включающий индукционную плавку шихтовых материалов в стальном тигле в газовой среде в виде смеси аргона и фреона 12 в соотношении 4:(1-2) и разливку металла в кристаллизатор, отличающийся тем, что расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40 мин.

Документы, цитированные в отчете о поиске Патент 2013 года RU2479376C1

СПОСОБ ПРОИЗВОДСТВА СЛИТКОВ МАГНИЕВЫХ СПЛАВОВ 2001
  • Бондарев Б.И.
  • Бондарев А.Б.
RU2190679C1
СПОСОБ ПОЛУЧЕНИЯ СПЛАВОВ НА ОСНОВЕ МАГНИЯ 0
  • И. П. Ткин, В. А. Кечин, С. В. Мушков О. И. Брандман
SU378475A1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЕВО-КАЛЬЦИЕВЫХ СПЛАВОВ 1992
  • Бессонов О.Ю.
  • Ильенко Е.В.
  • Котрехов В.А.
  • Устинов Б.С.
  • Хрипунов Н.С.
RU2035520C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЕВОГО СПЛАВА ВЫСОКОЙ ЧИСТОТЫ 1999
  • Кулинский А.И.
  • Курносенко В.В.
  • Шундиков Н.А.
  • Агалаков В.В.
  • Бабин В.С.
RU2157422C1
US 5248477 A, 28.09.1993.

RU 2 479 376 C1

Авторы

Ковалёв Геннадий Дмитриевич

Шадаев Денис Александрович

Авдюхин Сергей Павлович

Даты

2013-04-20Публикация

2011-10-21Подача