Предлагаемое изобретение относится к области судовождения - автоматическому управлению движением судна по заданному маршруту.
Известен способ автоматического управления движением судна по заданному путевому углу, реализованный в «Системе автоматического управления судном» (патент RU №2240953 С1, БИ №33, 27.11.2004 г.). Способ управления движением судна основан на использовании информации от приемника спутниковой навигационной системы, датчика угловой скорости, блока заданного значения путевого угла и сумматора, в котором по сигналам: текущего путевого угла, заданного путевого угла и угловой скорости судна формируется сигнал для управления рулевым приводом судна.
Известен также способ автоматического управления движением судна (патент RU 2292289 С1, БИ №3, 27.01.2007 г., принятый нами в качестве прототипа), в котором автоматическое управление движением судна осуществляется (аналогично описанному выше) с использованием: сумматора, рулевого привода, блока выработки угловой скорости, датчика руля, приемника спутниковой навигационной системы, блока заданного путевого угла. В способе управления движением судна корректируется заданное значение путевого угла в процессе плавания из точки «А» в точку «Б», затем «В»… по заданному маршруту.
Известные способы автоматического управления движением по заданной траектории обеспечивают точное движение к заданной точке. Однако серьезными недостатками рассмотренных способов управления движением судна по заданной траектории от точек «А» к точке «Б», затем «В»… являются:
- применение закона стабилизации судна на заданном направлении с использованием только кормового рулевого привода,
- при появлении поперечных возмущающих силовых воздействий, а также управляющих моментов, создается большой угол дрейфа судна, что приводит к уходу с заданной траектории движения и потерям в крейсерской скорости хода судна.
- затруднен проход судном узкостей из-за появления существенного угла дрейфа вблизи точек «А», «Б»… .
Приведенный ниже способ управления лишен этих недостатков, т.к. обеспечивает движение судна практически с нулевым углом дрейфа и нулевым поперечным уходом с заданной траектории движения.
Техническим результатом предлагаемого способа автоматического управления движением судна является:
- формирование управления судном кормовым рулевым приводом только по заданному углу курса и угловой скорости (при этом угол дрейфа и бокового сноса судна поддерживаются близкими к нулю подсистемой стабилизации нулевого дрейфа),
- минимизация отклонения судна от заданной траектории (в поперечном направлении),
- повышение крейсерской скорости хода судна (благодаря снижению сопротивления движению судна - β≈0),
- повышение безопасности проводки судна в узкостях (т.к. практически исключается боковое смещение судна при наличии поперечных управляющих и возмущающих сил).
Технический результат достигается благодаря:
- введению подсистемы стабилизации судна в поперечном направлении (в поперечном направлении подруливающее устройство или носовые рули в подсистеме стабилизации нулевого дрейфа автоматически устраняют угол дрейфа β и боковой снос У, даже при появлении поперечных сил, действующих на судно, β≈0 и У≈0),
- использованию кормового рулевого привода для управления судном только по углу курса.
Предлагаемый способ управления движением судна по заданной траектории (углу курса) осуществляется кормовым рулевым приводом с использованием: датчика руля δ, датчика угловой скорости ω, датчика курса ϕ и задатчика угла курса φзд. и сумматор на выходе которого формируется закон управления рулевым приводом вида:
где: δ - угол перекладки руля,
φ, φзд. - угол курса и заданный угол курса,
ω - угловая скорость судна,
К1, К2, К3 - коэффициенты регулирования.
Сигнал вида d/dt δ (1) вводится с выхода сумматора на вход рулевого привода. Это обеспечивает автоматическое управление движением судна по заданному углу курса.
Отличительной особенностью рассматриваемого способа является использование подсистемы стабилизации судна в поперечном направлении, включающей: второй сумматор, блок суммирования, приемник спутниковой навигационной системы, интегратор и подруливающее устройство для формирования и поддержания угла дрейфа и бокового сноса судна близким к нулю. В этом случае производная поперечной управляющей силы - dP/dt, создаваемая во втором сумматоре, - формируется в виде:
где Р - поперечная управляющая сила, создаваемая на выходе подруливающего устройства,
β - угол дрейфа судна, вырабатываемый на выходе блока суммирования,
К2∫βdt - интеграл по времени от угла дрейфа - боковое смещение судна У, вырабатываемое на выходе интегратора,
К1, К2, К3 - коэффициенты регулирования.
Сигнал угла дрейфа - β формируется в блоке суммирования с использованием сигналов с приемника спутниковой навигационной системы, на выходе которой вырабатывается путевой угол - ПУ, и датчика угла курса - φ, на выходе которого вырабатывается угол курса - φ:
Боковое смещение судна - У формируется в интеграторе, на вход которого вводится сигнал угла дрейфа - β из суммирующего устройства:
Сигнал производной поперечной управляющей силы -
Система автоматического управления движением судна по заданной траектории
Рассмотрим работу системы автоматического управления движением судна по заданной траектории, структура которой разработана с использованием предлагаемого способа управления движением судна по заданной траектории (с текущим углом дрейфа β≈0 и поперечным отклонением судна от заданной траектории У≈0 даже при наличии поперечных возмущающих сил, воздействующих на судно).
Система содержит: 1 - задатчик угла курса, 2 - датчик угла курса, 3 - датчик руля, 4 - первый сумматор, 5 - датчик угловой скорости (ДУС), 6 - рулевой привод, 7 - приемник спутниковой навигационной системы (СНС), 8 - блок суммирования, 9 - интегратор, 10 - второй сумматор, 11 - подруливающее устройство, 12 - объект управления - судно. Все связи между блоками системы приведены на фигуре. Реализация предлагаемой системы может быть осуществлена с использованием микросхем типа 140 УД-6 и 140 УД-8:
- сумматоры 4, 10,
- интегратор 9.
Датчик угловой скорости 5 - типовой датчик угловой скорости ДУС-5 с чувствительностью не ниже 0,05 гр/с. Задатчик угла курса 1 - программный блок формирования сигнала заданного значения угла курса для движения по заданной траектории от точки А к точке Б… . Датчик угла курса 2 - гирокомпас типа «Гиря». Штатные судовые системы:
- приемник СНС 7,
- рулевой привод 6,
- подруливающее устройство 11.
Система автоматически обеспечивает движение корабля по заданной траектории. На вход первого сумматора 4 поступают сигналы:
- угловой скорости судна ω - с датчика угловой скорости 5,
- угла перекладки руля δ - с датчика руля 3,
- текущего угла курса φ - с датчика угла курса 2,
- заданного угла курса φзд. - с задатчика угла курса 1.
На выходе первого сумматора 4 формируется заданное значение угловой скорости перекладки кормового руля d/dt δзд. (или угла перекладки кормового руля - δзд. в зависимости от типа рулевой машины).
В соответствии с зависимостью (1) руль будет автоматически перекладываться и обеспечивать удержание судна с углом курса, равным заданному углу курса:
φ=φзд.,
Одновременно осуществляется стабилизация судна на нулевом угле дрейфа и с нулевым поперечным смещением относительно заданной траектории движения. Это достигается благодаря использованию подсистемы стабилизации судна в поперечном направлении.
На выходе (подсистемы стабилизации судна в поперечном направлении) в подруливающем устройстве - 11 формируется управляющее воздействие на судно в виде поперечной управляющей силы - Р. Закон управления подруливающим устройством - 11 формируется во втором сумматоре - 10 в соответствии с зависимостью (2).
Сигналы, поступающие на вход второго сумматора - 10:
- угол дрейфа β формируется в соответствии с зависимостью (3) в блоке суммирования 8, на вход которого вводится сигнал текущего угла курса - φ из датчика угла курса 2 и сигнал текущего путевого угла - ПУ из приемника спутниковой навигационной системы - 7,
- боковой снос - У формируется на выходе интегратора - 9, на вход которого поступает сигнал - β с выхода блока суммирования - 8,
- поперечная управляющая сила - P с выхода подруливающего устройства - 11.
С выхода второго сумматора - 10 сигнал производной поперечной управляющей силы
Моделирование рассмотренного выше способа автоматического управления движением судна, в котором обеспечивается стабилизация нулевого угла дрейфа и нулевого бокового сноса, подтвердило его работоспособность, а следовательно, и высокую эффективность использования предложенного способа управления движением судна по заданной траектории особенно при наличии поперечных сил, воздействующих на судно.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА ПО ШИРОТЕ И ДОЛГОТЕ | 2012 |
|
RU2516885C2 |
АППАРАТУРА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА | 2003 |
|
RU2223197C1 |
УСТРОЙСТВО И СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА ПО РАСПИСАНИЮ | 2013 |
|
RU2525606C1 |
АППАРАТУРА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА | 2002 |
|
RU2221728C1 |
УСТРОЙСТВО УПРАВЛЕНИЯ ПРОДОЛЬНЫМ ДВИЖЕНИЕМ СУДНА | 2002 |
|
RU2224279C1 |
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА С КОМПЕНСАЦИЕЙ МЕДЛЕННО МЕНЯЮЩИХСЯ ВНЕШНИХ ВОЗМУЩЕНИЙ И СИСТЕМА УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА С КОМПЕНСАЦИЕЙ МЕДЛЕННО МЕНЯЮЩИХСЯ ВНЕШНИХ ВОЗМУЩЕНИЙ | 2014 |
|
RU2564786C1 |
ОТКАЗОУСТОЙЧИВАЯ СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА | 2013 |
|
RU2532000C1 |
АППАРАТУРА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА | 1998 |
|
RU2144884C1 |
СПОСОБ АВТОМАТИЧЕСКОЙ ПРОВОДКИ СУДОВ | 2005 |
|
RU2277495C1 |
УСТРОЙСТВО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА | 1998 |
|
RU2150409C1 |
Изобретение относится к области судовождения. Автоматическое управление движением судна по заданной траектории осуществляют путем управления по заданному углу курса с использованием кормовых рулей. Для обеспечения движения судна с углом дрейфа, близким к нулю, в предложенном способе применяют также подсистему стабилизации судна в поперечном направлении, в которой формируют управление подруливающим устройством с использованием сигналов: угла дрейфа из блока суммирования, на вход которого вводят угол курса из датчика курса и путевой угол из приемника спутниковой навигационной системы и, бокового смещения судна из интегратора. Оба сигнала вводят на вход второго сумматора, выход которого подключен к подруливающему устройству. При этом обеспечивается не только стабилизация нулевого дрейфа, но и стабилизация судна по нулевому боковому смещению относительно заданной траектории движения судна. 1 ил.
Способ управления движением судна по заданной траектории, характеризующийся тем, что используют датчик руля δ, датчик угловой скорости ω, датчик курса ϕ, задатчик угла курса ϕзд и первый сумматор, на выходе которого формируют сигнал управления рулевым приводом d/dt δ, который вводят на вход рулевого привода, на вход первого сумматора вводятся сигналы:
угла перекладки руля δ с датчика руля,
угловой скорости ω с датчика угловой скорости,
угла курса ϕ с датчика курса,
заданного угла курса ϕзд с задатчика угла курса,
отличающийся тем, что используют второй сумматор, блок суммирования, приемник спутниковой навигационной системы, интегратор и подруливающее устройство, на вход которого вводят сигнал производной поперечной силы dP/dt с выхода второго сумматора, на вход последнего поступают сигналы:
угла дрейфа β из блока суммирования, на вход последнего вводят сигналы угла курса ϕ из датчика курса и путевого угла ПУ из приемника спутниковой навигационной системы,
бокового смещения судна У из интегратора, на вход которого вводят сигнал угла дрейфа β из блока суммирования.
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА | 2005 |
|
RU2292289C1 |
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ СУДНА | 2003 |
|
RU2240953C1 |
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ СУДНОМ | 2004 |
|
RU2248914C1 |
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДВИЖЕНИЯ СУДНА | 1999 |
|
RU2151713C1 |
Авторы
Даты
2013-06-10—Публикация
2011-07-29—Подача