СПОСОБ АЗОТИРОВАНИЯ ДЛИННОМЕРНОЙ ПОЛОЙ СТАЛЬНОЙ ДЕТАЛИ Российский патент 2013 года по МПК C23C8/26 C23C10/24 

Описание патента на изобретение RU2493288C1

Изобретение относится к области обработки поверхности металлического материала путем взаимодействия поверхности с ионизированным газом и может быть использовано, например, при упрочнении внутренней поверхности длинномерных прецизионных цилиндров скважинных насосов, работающих в условиях абразивного износа.

Известен способ химико-термической обработки стальных изделий (ЕР 0419675, МПК5 С23С 8/04, опубл. 1991 г.), включающий местную защиту поверхности изделий путем нанесения обмазки, причем предварительно на наружную поверхность изделий наносят слой из синтетической резины, а на него наносят смесь, содержащую, по крайней мере, один элемент, выбранный из группы, включающей буру, оксид бора, жидкое стекло, фриту, металлический порошок или фольгу, и по крайней мере один компонент, выбранный из группы, включающей оксид титана, оксид железа, оксид цинка, тальк, карбонат кальция, силикат, глинозем, окись алюминия, двуокись циркония, окись магния, карбид кремния, графит и каолин, нагрев и диффузионное насыщение в атмосфере газового карбюризатора.

Недостатком такого способа является то, что он может быть использован только при низкотемпературных процессах химико-термической обработки, так как при высокой температуре обработки и длительном времени выдержки, защитный слой из синтетической резины будет выгорать, а нанесенные на его поверхность компоненты будут выкрашиваться с поверхности изделия и не обеспечат ее защиту.

Наиболее близким к заявляемому и принятым в качестве прототипа является способ химико-термической обработки длинномерной полой стальной детали (патент RU 2180017, МПК7 С23С 38/04, опубл. 2002 г.), включающий нанесение на наружную поверхность защитного слоя и диффузионное насыщение внутренней поверхности ионизированным газом. Предварительно наносят защитный слой на наружную поверхность изделий, а затем на него наносят смесь оксидов железа с жидким стеклом, нагрев и диффузионное насыщение в атмосфере газового карбюризатора, согласно изобретению в качестве защитного слоя наносят огнеупорную глину и просушивают его, а весовое соотношение жидкого стекла и оксидов железа составляет 1:3. После просушивания огнеупорной глины смеси оксидов железа с жидким стеклом способствует защите металла наружной поверхности от насыщения углеродом и азотом в процессе химико-термической обработки, что повышает качество упрочняемого изделия. Нанесение на наружную поверхность изделия после просушивания огнеупорной глины смеси оксидов железа с жидким стеклом способствует защите металла наружной поверхности от насыщения углеродом и азотом в процессе химико-термической обработки, что повышает качество упрочняемого изделия.

Однако такой способ сложен в осуществлении, так как предусматривает несколько нетехнологичных длительных операций: нанесение огнеупорной глины, ее просушивание, нанесение смеси оксидов железа с жидким стеклом. Кроме того, защитный слой может растрескиваться и отслаиваться в связи с неравномерным нанесением и термическими напряжениями. После азотирования требуется трудоемкая операция удаления его и тщательная очистка деталей.

Задачей предлагаемого изобретения является упрощение способа азотирования длинномерной полой стальной детали, обеспечивающего ее геометрическую точность и повышение его производительности.

Поставленная задача решается усовершенствованием способа химико-термической обработки длинномерной полой стальной детали, включающего нанесение на наружную поверхность защитного слоя и диффузионное насыщение внутренней поверхности ионизированным газом.

Это усовершенствование заключается в том, что в качестве защитного наносят медесодержащий слой толщиной от 0,01 мм до 0,1 мм, а диффузионное насыщение внутренней поверхности осуществляют азотированием на глубину не более 0,35 мм.

Такое выполнение способа позволяет упростить защиту наружной поверхности обрабатываемой детали и обеспечить требуемые геометрические параметры обработанной детали за счет снижения внутренних остаточных напряжений и повышения равномерности формирования упрочненного слоя, что исключает дополнительную механическую обработку - трудоемкие и нежелательные операции правки и хонингования. Предлагаемый способ защиты высокопроизводительный (до 0,2 м2/мин).

Нанесение слоя толщиной меньше 0,01 мм не обеспечит требуемой защиты наружной поверхности, увеличение толщины защитного слоя более 0,1 мм нецелесообразно, так как увеличивает расход материала защитного слоя и усложняет процесс его нанесения.

Осуществление диффузионного насыщения внутренней поверхности азотированием на глубину не более 0,35 мм позволяет упрочнить внутреннюю поверхность длинномерной полой детали, обеспечив при этом требуемые геометрические параметры обработанной детали за счет снижения внутренних остаточных напряжений и повышения равномерности формирования упрочненного слоя, что исключает дополнительную механическую обработку - трудоемкие и нежелательные операции правки и хонингования.

Способ осуществляется следующим образом.

На наружную поверхность стальной длинномерной полой детали наносят защитный медесодержащий слой толщиной от 0,01 мм до 0,1 мм. Для этого можно использовать известные дешевые растворы, включающие водорастворимые соли меди, хлориды щелочно-земельных металлов и воду. После чего деталь помещают в вакуумную камеру ионно-вакуумной химико - термической обработки и осуществляют ее азотирование на глубину не более 0,35 мм.

Предлагаемым способом обработали цилиндры скважинных штанговых насосов из стали 38Х2МЮА, длиной 4262+10 мм, внутренним диаметром 44,45+0,05 мм, наружным диаметром 57,85-0,3 с разностенностью до 0,6 мм и остаточными напряжениями до 10 кГ/мм2. На наружную поверхность цилиндра наносили защитный слой (на 5 литров раствора 360 г дигидрата хлорида меди CuCl2·H2O и 140 г хлорида аммония NH4Cl, остальное дистиллированная вода) толщиной 0,06 мм. После чего детали размещали в камере с использованием специальной оснастки по 18 штук и осуществляли их азотирование при t=500-530°C в течение 6-14 часов на глубину не более 0,35 мм. В результате получили цилиндры с упрочненной внутренней поверхностью и требуемой размерной точностью по непрямолинейности в пределах 0,1 мм на 1000 мм, и увеличенным внутренним диаметром не более чем на 0,015 мм, что соответствует требованиям к геометрическим параметрам готовой детали.

Таким образом, использование предлагаемого способа позволяет упростить и повысить производительность получение детали с упрочненной внутренней поверхностью и требуемыми геометрическими характеристиками.

Похожие патенты RU2493288C1

название год авторы номер документа
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ 2000
  • Козловский А.М.
  • Яковлев В.В.
  • Сельницын М.Г.
  • Федорин В.Р.
  • Пыхов С.И.
  • Колесников К.И.
RU2180017C1
Способ упрочнения металлических деталей и покрытие для них 2022
  • Голец Александр Витальевич
RU2779651C1
СПОСОБ ЦИКЛИЧЕСКОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ СТАЛИ 08Ю В ГАЗООБРАЗНЫХ СРЕДАХ 2018
  • Александров Владимир Алексеевич
  • Остаева Галина Юрьевна
  • Исаева Ирина Юрьевна
RU2692007C1
Способ обработки изделий 1981
  • Херсонский Анатолий Кельманович
  • Любашевский Михаил Семенович
SU968083A1
Способ обработки поверхности на стальных деталях 2021
  • Есипов Роман Сергеевич
  • Хусаинов Юлдаш Гамирович
  • Васильев Арсентий Андреевич
  • Тяпунова Елена Андреевна
  • Абдуллин Равиль Айратович
  • Николаев Алексей Александрович
RU2766388C1
Обмазка для местной защиты металлических изделий при химико-термической обработке 1983
  • Никитин Валентин Васильевич
  • Молчанов Александр Георгиевич
  • Шалимова Светлана Ивановна
SU1157128A1
Способ борирования стальных изделий 1988
  • Недостаев Александр Александрович
  • Ермолин Генрих Павлович
  • Разиньков Федор Федорович
SU1527318A1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ 2011
  • Богданова Наталья Васильевна
  • Кочергин Александр Семёнович
  • Евграфов Евгений Михайлович
RU2478137C2
СПОСОБ ИОННОГО АЗОТИРОВАНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2016
  • Насыров Вадим Файзерахманович
  • Мингажев Аскар Джамилевич
  • Хуснимарданов Рушан Наилевич
  • Галимова Ирина Рифхатовна
  • Измайлова Наиля Фёдоровна
  • Бабенко Наталья Сергеевна
RU2634400C1
СПОСОБ ЦИКЛИЧЕСКОГО ГАЗОВОГО АЗОТИРОВАНИЯ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ ЛЕГИРОВАННЫХ СТАЛЕЙ 2015
  • Александров Владимир Алексеевич
  • Петрова Лариса Георгиевна
  • Брежнев Андрей Александрович
  • Демин Петр Евгеньевич
RU2614292C1

Реферат патента 2013 года СПОСОБ АЗОТИРОВАНИЯ ДЛИННОМЕРНОЙ ПОЛОЙ СТАЛЬНОЙ ДЕТАЛИ

Изобретение относится к обработке поверхности металлического материала и может быть использовано при упрочнении внутренней поверхности длинномерных прецизионных цилиндров скважинных насосов, работающих в условиях абразивного износа. При обработке на наружную поверхность детали наносят защитный медесодержащий слой толщиной от 0,01 мм до 0,1 мм, а диффузионное насыщение внутренней поверхности осуществляют азотированием на глубину не более 0,35 мм. Обеспечивается упрощение способа азотирования длинномерной полой стальной детали и повышение точности геометрических размеров азотированной детали. 1 пр.

Формула изобретения RU 2 493 288 C1

Способ азотирования длинномерной полой стальной детали, включающий нанесение на наружную поверхность защитного слоя и диффузионное насыщение внутренней поверхности ионизированным газом, отличающийся тем, что в качестве защитного слоя наносят медьсодержащий слой толщиной от 0,01 до 0,1 мм, а диффузионное насыщение внутренней поверхности осуществляют азотированием на глубину не более 0,35 мм.

Документы, цитированные в отчете о поиске Патент 2013 года RU2493288C1

СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ 2000
  • Козловский А.М.
  • Яковлев В.В.
  • Сельницын М.Г.
  • Федорин В.Р.
  • Пыхов С.И.
  • Колесников К.И.
RU2180017C1
Раствор для защиты поверхности деталей из нержавеющей стали от насыщения при азотировании 1978
  • Симеонов Станислав Львович
  • Минина Людмила Викторовна
SU969783A1
Способ азотирования 1980
  • Кадников Сергей Аркадьевич
SU945245A1
DE 3502144 A1, 08.08.1985
Абразивный круг 1977
  • Шушпан Юрий Иванович
SU878558A1

RU 2 493 288 C1

Авторы

Богданов Владислав Васильевич

Долгих Сергей Наумович

Даты

2013-09-20Публикация

2012-01-27Подача