Изобретение касается комплексных соединений лантаноидов, в частности трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия, которое может быть использовано в качестве люминесцентного материала.
В настоящее время многие ведущие лаборатории мира занимаются получением и исследованием комплексных соединений лантаноидов, используемых для перспективных светотрансформирующих материалов, см. журнал «Успехи химии», №74 (12), Каткова М.А., Витухновский А.Г., Бочкарев М.Н. Координационные соединения редкоземельных металлов с органическими лигандами для электролюминесцентных диодов, 2005, с.1193-1215; журнал Chem. Soc. Rev: №39 Eliseevaa and Jean-Claude G. Bunzli Lanthanide luminescence for functional materials and bio-sciences, 2010, c.189-227.
Известны люминесцентные материалы, получаемые путем допирования соединений лантаноидов, в полимеры, см. журнал «Polymer», №46, R. Bonzanini, Е.М. Girotto, М.С. Goncalves, Е. Radovanovic, Е.С. Muniz, A.F. Rubira, Effects of europium (III) acetylacetonate doping on the miscibility and photoluminescent properties of polycarbonate and poly(methylmethacrylate) blends, 2005, c.253; журнал «Colloids and Surfaces A: Physicochemical and Engineering Aspects», V.284-285, I.15, K. Tamaki, H. Yabu, T. Isoshima, M. Hara and M. Shimomura Fabrication of luminescent polymeric nanoparticles doped with a lanthanide complex by self-organization process, 2006, c.355-358; журнал «Proc Natl Acad Sci USA», №106(40), Bryson J.M., Fichter K.M., Chu. W.J., Lee J.H., Li J, Madsen L.A., McLendon P.M., Reineke T.M. Polymer beacons for luminescence and; magnetic resonance imaging of DNA delivery, 2009, c. 16913; журнал «Synthetic Metals», V.160, I.15-16, J.Lin, Q. Wang, Ch. Tan and Chen H. Luminescence recognition behavior concerning different anions by lanthanide complex equipped with electron-withdraw groups and in PMMA matrix, 2010, c.1780-1786.
Однако допирование полимерной матрицы возможно только небольшими количествами редкоземельных комплексных соединений, что связано с их кристаллизацией в пленке композита и как следствие, не полным переносом энергии с полимера на комплексное соединение и уменьшением эффективности люминесценции.
В этом аспекте особенно важной задачей является получение прозрачных бездефектных оптических пленок, которые могут обеспечить высокую эффективность люминесценции.
Наиболее близким по технической сущности является трис[1,3-дифенил-1,3-пропандионо]-[1,10-фенантролин]европия формулы:
Трис[1,3-дифенил-1,3-пропандионо]-[1,10-фенантролин] европия обладает люминесценцией в красной области видимого спектра, см. журнал Physica В: Condensed Matter., V.406, I.14, L. Huang Optical transition properties of Eu3+ in Eu(DBM)3phen mono-dispersed microspheres for microcavity laser application, 2011, c.2745-2749.
Недостатком трис[1,3-дифенил-1,3-пропандионо]-[1,10-фенантролин] европия является то, что при получении на его основе люминесцентных пленок происходит его кристаллизация, что делает пленки мутными, дефектными. Пленка на основе трис[1,3-дифенил-1,3-пропандионо]-[1,10-фенантролин] европия обладает плохой люминесценцией, что не позволяет использовать данное комплексное соединение в чистом виде в качестве люминесцентного материала.
Задачей изобретения является синтез трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин] европия, способного образовывать оптически прозрачные пленки, трансформирующие УФ-излучение и обладающие высокоэффективной люминесценцией.
Техническая задача решается новой химической структурой вещества трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия формулы
в качестве люминесцентного материала.
Решение технической задачи позволяет получать на основе заявляемого соединения люминесцентный материал в виде оптически прозрачных пленок, которые обладают по сравнению с прототипом в два раза более эффективной люминесценцией в красной области спектра и превышающей в 5 раз светопропускающей способностью.
Синтез трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия ведут следующим образом: к горячему спиртовому раствору, содержащему 0.3 ммоль 1-(4-(4-пропилциклогексил)фенил)декан-1,3-диона, добавляют при перемешивании 0.1 ммоль 1,10-фенантролина и 0.3 ммоль едкого натра, а затем спиртовый раствор гексагидрата хлорида европия в количестве 0.1 ммоль. Перемешивание ведут 10 минут. Выпавший мелкодисперсный осадок отфильтровают, промывают спиртом, высушивают в вакууме над Р205. Т.пл. 135°С. Выход 0.166 г (62%).
Состав и строение полученного трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин] европия подтверждены данными элементного анализа, ИК-спектроскопией и масс-спектрометрией. Молекулярная масса: 1384 г/моль. Найдено (%): С, 72.13; Н, 8.97; N, 1.90. C87H119EuN2O6. Вычислено (%): С, 72.07; Н, 8.90; N, 1.93. ИК-спектр, ν/cm-1: 412-403 (La-O) и 208 (La-N).
Спектры светопропускания пленок на основе полученного трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия и прототипа были сняты на спектрофотометре Lambda 35 на кварцевых подложках размером 10×20 мм, толщиной 1 мм при одинаковых режимах съемки, см. фиг.1. Из спектра видно, что интенсивность пропускания света в области от 400 до 700 нм сильно зависит от агрегатного состояния вещества в пленке образца. Пленка на основе заявляемого трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин] европия пропускает свет в 5 раз лучше, чем пленка по прототипу на основе трис[1,3-дифенил-1,3-пропандионо]-[1,10-фенантролин]европия, имеющая кристаллические включения.
Спектры люминесценции заявляемого трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия (сплошная линия) и прототипа (пунктирная линия) были сняты на спектрофлюориметре Cary Eclipse на кварцевых подложках размером 10×20 мм, толщиной 1 мм, см. фиг.2. При облучении ультрафиолетовым светом при длине волны λвз=337 нм в твердом состоянии заявляемое соединение излучает интенсивную красную фотолюминесценцию с максимумом на длине волны 614 нм, которая в два раза превышает фотолюминесценцию прототипа.
Заявляемый трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия по сравнению с наиболее близким по технической сущности трис[1,3-дифенил-1,3-пропандионо]-[1,10-фенантролин]европия за счет особенностей химического строения образует оптически прозрачные пленки, способные пропускать 98% видимого света, что позволяет использовать его как индивидуальное вещество в качестве люминесцентного светотрансформирующего материала.
Таким образом, решение технической задачи позволяет получать на основе заявляемого соединения люминесцентный материал в виде оптически прозрачных пленок, которые обладают по сравнению с прототипом в два раза более эффективной люминесценцией в красной области спектра и превышающей в 5 раз светопропускающей способностью.
название | год | авторы | номер документа |
---|---|---|---|
Светопреобразующая полимерная композиция | 2016 |
|
RU2633539C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЮМИНЕСЦЕНТНОГО РАТИОМЕТРИЧЕСКОГО ТЕРМОИНДИКАТОРА | 2022 |
|
RU2782188C1 |
Люминесцентное полимерное покрытие для обнаружения повреждений конструкции | 2016 |
|
RU2644917C1 |
Комплексные соединения редкоземельных металлов с органическими лигандами в качестве радиационно-стойких люминесцентных материалов | 2019 |
|
RU2720792C1 |
Фотолюминесцентный индикатор дозы ультрафиолетового излучения | 2020 |
|
RU2731655C1 |
ЛЮМИНЕСЦИРУЮЩИЕ КОМЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ С ПИРАЗОЛСОДЕРЖАЩИМИ ФТОРИРОВАННЫМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2011 |
|
RU2485163C1 |
Люминесцентный композитный материал на основе комплексов Eu(III) и способ его получения | 2019 |
|
RU2789111C2 |
ЛЮМИНЕСЦИРУЮЩИЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ С ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2011 |
|
RU2470026C1 |
9-антраценаты лантанидов, проявляющие люминесцентные свойства, и органические светодиоды на их основе | 2015 |
|
RU2626824C2 |
ЛЮМИНЕСЦЕНТНЫЕ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ЛАНТАНОИДОВ ДЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ | 2011 |
|
RU2478682C1 |
Изобретение относится к комплексным соединениям лантапоидов, в частности к новому соединению трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия формулы
которое может быть использовано в качестве люминесцентного материала. Заявленное соединение обеспечивает получение люминесцентного материала в виде оптически прозрачных пленок, обладающих по сравнению с ближайшим аналогом в два раза более эффективной люминесценцией в красной области спектра и превышающей в 5 раз светопропускающей способностью. 2 ил., 1 пр.
Трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия следующей формулы
в качестве люминесцентного материала.
LIBO HUANG et al | |||
Physica В: Condensed Matter | |||
Электрическая лампа накаливания с двумя нитями | 1923 |
|
SU406A1 |
Грузозахватное приспособление | 1956 |
|
SU106880A1 |
Материалопровод пневмотранспортных систем | 1982 |
|
SU1041464A1 |
Скважинный электронагреватель | 1982 |
|
SU1035200A1 |
Способ обезжелезнения бокситов | 1981 |
|
SU954372A1 |
Арифметико-логическое устройство | 1978 |
|
SU922727A1 |
Арифметико-логическое устройство | 1978 |
|
SU922727A1 |
СОЕДИНЕНИЕ ДИ(НИТРАТО)АЦЕТИЛАЦЕТОНАТОБИС (1,10-ФЕНАНТРОЛИН) ЛАНТАНОИД (III), ПРИГОДНОЕ ДЛЯ ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ ЛЮМИНЕСЦЕНТНОЙ ДОБАВКИ В ЧЕРНИЛА, И ЧЕРНИЛА ДЛЯ СКРЫТОЙ МАРКИРОВКИ ЦЕННЫХ МАТЕРИАЛЬНЫХ ОБЪЕКТОВ | 2007 |
|
RU2373211C2 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПЛЕНОК | 1992 |
|
RU2047623C1 |
Авторы
Даты
2013-11-20—Публикация
2012-05-29—Подача