Изобретение относится к реагентам для очистки солянокислых растворов от ионов меди и может быть использовано в очистке сточных вод металлургических предприятий.
Известен реагент для очистки солянокислых растворов от ионов меди [А.с. СССР 1435660, C23G 1/36], представляющий собой железный скрап. Недостатком данного реагента является то, что он применим только для грубой, предварительной очистки концентрированных по ионам меди растворов [Милованов Л.В. Очистка и использование сточных вод предприятий цветной металлургии. - М.: Металлургия, 1971. С.118-119].
За прототип выбран реагент для очистки солянокислых растворов от ионов меди, представляющий собой железные стружки [Бабенко С.А., Пинигин С.А., Тасоев Р.И. Исследование процесса цементации меди железными стружками //Изв. Томск. политехн. ин-та. 1976. Т.275. С.92-95]. Недостатком этого реагента является то, что он применим только для очистки концентрированных по ионам меди растворов (60 г/дм3), не дает глубокой очистки (остаточное содержание ионов меди 0,096-2,85 г/дм3), не обеспечивает быстрой очистки (30-120 мин), причем процесс очистки сопровождается выделением водорода.
Невозможность глубокой очистки солянокислых растворов от ионов меди цементацией определяется тем, что практически все ионы меди (1) связаны в хлоридные комплексы различного состава, зависящего от концентрации хлорид ионов.
Задачей изобретения является разработка реагента на основе порошка железа для очистки солянокислых растворов от ионов меди, который применим для разбавленных по ионам меди растворов, позволяющий быстро и экологически безопасно достичь низкое остаточное содержание ионов меди в растворе.
В качестве решения указанной задачи предложен реагент для очистки солянокислых растворов от ионов меди, обеспечивающий быструю, экологически безопасную и глубокую очистку, представляющий собой механически активированную смесь порошков железа и серы при следующем соотношении компонентов, мас.%:
Для возможности повторного использования реагента без снижения эффективности очистки в качестве порошка железа берут порошок карбонильного железа.
На фиг.1 показаны изображения исходного порошка железа и механически активированной смеси порошков железа и серы.
Исходный порошок железа, по данным растровой электронной микроскопии (РЭМ), представлял шарообразные конгломераты различной пространственной структуры (фиг.1,а).
Согласно данным рентгенофазового анализа (РФА), степень окисленности порошков железа может достигать 50%. При механической обработке (истирании) окисленного порошка железа в присутствии серы происходит его активация за счет протекания твердофазного процесса, связанного с образованием на поверхности железа пленок, содержащих серу (фиг.1,б). Как видно из фиг.1,б, после истирания механически активированная смесь порошков представляют более мелкодисперсную систему, и имеет более развитую поверхность. Элементный состав поверхностного слоя после активации при соотношении компонентов (мас.%): Fe - 99,0; S - 1,0 составляет (ат.%): Fe - 60,21; O - 33,32; S - 6,47.
Сущность изобретения заключается в том, что в качестве реагента берут механически активированную (перетертую) смесь порошков железа и серы при указанном выше соотношении компонентов.
Пример 1. Реагент состава (мас.%): Fe карбонильное - 99,0; S - 1,0 был апробирован для очистки солянокислого раствора (23°C) от ионов меди, содержащего (г/дм3): НСlобщ - 9,0; Feобщ - 2,8; Fe2+ - 0.11; Fe3+ - 2,69; Cu2+ - 0,067. Остаточное содержание ионов меди: после первичного использования реагента при длительности обработки раствора <0,001 г/дм3, после повторного использования реагента <0,001 г/дм3; газовыделения не наблюдали.
Контроль остаточного содержания ионов меди в солянокислом растворе проводили методом атомно-абсорбционной спектроскопии (с пределом чувствительности не ниже 0,001 г/дм3) с электротермической атомизацией проб раствора на приборе ПЕРКИН-ЭЛМЕР (модель РЕ-4100) с графитовой печью типа HGA-500 в качестве атомизатора.
Последующие примеры выполняли аналогично примеру 1, изменяя составы растворов и состав реагента. Результаты приведены в таблице.
S-1,0*
S-0,5
S-5,0*
S-1,0
S-0,5*
S-5,0
S-1,0
В слабокислых средах процесс удаления ионов меди протекает по твердофазному механизму и не сопровождается образованием сероводорода и выделением водорода. На фиг.2 представлено РЭМ изображение активированной смеси порошков железа и серы после извлечения меди из солянокислого раствора, состав которого отвечает примеру 1.
Элементный состав поверхностного слоя реагента после его первичного использования при соотношении компонентов (мас.%): Fe - 99,0; S - 1,0 составляет (ат.%): Fe - 74,02; 0-12,58; S - 5,85; Cu - 7,55. Согласно данным РФА поверхностный слой состоит (мас.%): Fe3O4 - 44,44; Cu2S - 19,85; Cu - 0; α-Fe - остальное.
название | год | авторы | номер документа |
---|---|---|---|
УСТАНОВКА ДЛЯ РЕГЕНЕРАЦИИ СОЛЯНОЙ КИСЛОТЫ ИЗ ОТРАБОТАННОГО ТРАВИЛЬНОГО РАСТВОРА | 2012 |
|
RU2490374C1 |
СПОСОБ ОСАЖДЕНИЯ ТЯЖЕЛЫХ ЦВЕТНЫХ МЕТАЛЛОВ ИЗ ПРОМЫШЛЕННЫХ РАСТВОРОВ И/ИЛИ СТОКОВ | 2015 |
|
RU2601333C1 |
СПОСОБ ОЧИСТКИ РАСТВОРОВ ОТ СЕЛЕНА И МЫШЬЯКА | 2014 |
|
RU2592596C2 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1992 |
|
RU2049544C1 |
Способ комплексной переработки пиритсодержащего сырья | 2016 |
|
RU2627835C2 |
СПОСОБ ПЕРЕРАБОТКИ ОСТАТКОВ СИНТЕЗА КАРБОНИЛЬНОГО НИКЕЛЯ | 2009 |
|
RU2398030C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЦВЕТНЫХ И БЛАГОРОДНЫХ МЕТАЛЛОВ, ПРЕИМУЩЕСТВЕННО МЕДИ И ЗОЛОТА, ИЗ ПИРИТНЫХ ОГАРКОВ | 2005 |
|
RU2342446C2 |
КОАГУЛЯНТ-АДСОРБЕНТ ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОКОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ, СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА-АДСОРБЕНТА ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОКОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ И СПОСОБ ИСПОЛЬЗОВАНИЯ КОАГУЛЯНТА-АДСОРБЕНТА ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОКОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2009 |
|
RU2411191C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ГЕКСАЦИАНОФЕРРАТОВ | 2005 |
|
RU2281918C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ НИКЕЛЯ ИЗ РАСТВОРОВ И ОЧИСТКИ ОТ ПРИМЕСЕЙ | 2010 |
|
RU2430981C1 |
Изобретение может быть использовано при очистке сточных вод металлургических предприятий. Для очистки солянокислых растворов от ионов меди используют реагент, представляющий собой механически активированную смесь порошков железа и серы, взятую при следующем соотношении компонентов, масс.%: железо 95,0 - 99,5; сера 0,5 - 5,0. В качестве порошка железа может быть использован порошок карбонильного железа. Изобретение позволяет быстро и экологически безопасно достичь низкого остаточного содержания ионов меди в разбавленных солянокислых растворах. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр.
1. Реагент для очистки солянокислых растворов от ионов меди, содержащий железо, отличающийся тем, что в качестве реагента используют механически активированную смесь порошков железа и серы при следующем соотношении компонентов, мас.%:
2. Реагент по п.1, отличающийся тем, что в качестве порошка железа используют порошок карбонильного железа.
БАБЕНКО С.А | |||
и др | |||
Исследование процесса цементации меди железными стружками // Известия Томского политехнического института | |||
Планшайба для точной расточки лекал и выработок | 1922 |
|
SU1976A1 |
Способ регенерации отработанного травильного раствора, содержащего хлористое и хлорное железо и медь | 1990 |
|
SU1798383A1 |
Способ регенерации травильного для меди раствора на основе хлорного железа | 1980 |
|
SU949019A1 |
Способ выделения цветных металлов | 1972 |
|
SU579745A1 |
US 7351343 B2, 01.04.2008. |
Авторы
Даты
2014-02-20—Публикация
2012-06-06—Подача