Изобретение относится к виноделию, а именно к способам исследования летучих органических соединений коньячной продукции.
Основным способом для анализа летучих органических соединений в настоящее время является газовая хроматография [1-6]. При использовании газовой хроматографии, как и любого современного инструментального метода, очень важна пробоподготовка. Варианты пробоподготовки коньячной продукции к газохроматографическому анализу:
1. Простая перегонка: получение дистиллята коньячной продукции.
2. Экстракция смесью гексан-диэтиловый эфир (1:2). Она дает возможность извлечь органические соединения из коньячной продукции для последующего анализа [7].
3. Разбавление образца насыщенным раствором сульфата аммония и экстракция органическим растворителем. Такая пробоподготовка дает возможность избавить образец от значительных количеств спирта и воды, но при этом приводит к потере части полярных соединений [8-10].
4. Подщелачивание образца до рН 8,5 с последующей промывкой диэтиловым эфиром для анализа органических кислот. После чего водную фракцию подкисляют (рН<2) и загружают в колонку с хромосорбом, промывая ее диэтиловым эфиром с использованием твердофазного экстрактора. Элюат затем выпаривается в токе азота, подвергается силилированию с использованием MTBSTFA (N-(трет-бутил-диметил-силил)-2,2,2-трифлуоро-N-метилацетамид) и анализируется газохроматографическим методом [11]. Такая пробоподготовка достаточно сложна и за счет многостадийности возможны потери. Кроме того, не все летучие органические соединения возможно подвергнуть силилированию.
5. Хромадистилляция - для концентрирования минорных компонентов используется перегонка, осуществляемая в хроматографических условиях и происходящая на поверхности инертных стеклянных шариков, которыми заполнена хромадистилляционная предколонка [12]. Устройство такой колонки достаточно сложное, этот способ схож с простой перегонкой.
6. Анализ паровой фазы: анализ наджидкостного пространства, находящегося в равновесии с составом жидкого образца в замкнутой системе. Этот метод отбора паровой фазы иногда называют «электронным носом», для этого метода существуют парофазные приставки к газовым хроматографам [13-15].
7. Концентрирование и разделение летучих компонентов с использованием силикагеля или препаративной хроматографии с предварительной экстракцией летучих компонентов дихлорметаном [16]. Такая пробоподготовка ведет к частичной потере определенных классов соединений из-за свойств используемого растворителя.
8. Система электронного носа с пьезосенсорами. Это вариант прямого электрохимического детектирования компонентов, который в силу селективости детектора, не всегда адекватно отражает аромат продукта [17].
9. Использование твердофазной микроэкстракции для изучения летучих органических соединений [18, 19]. Недостатком этого метода является высокая селективность сорбентов, используемых для твердофазной микроэкстрации.
Наиболее перспективным способом анализа является газовая хроматография в сочетании с пробоподготовкой. Для нее можно использовать метод простой перегонки (неоспоримым преимуществом которого является его простота), метод анализа паровой фазы (как метод частично ориентированные на анализ соединений, участвующих в формировании запаха). Оба эти метода позволяют проводить анализ летучих органических соединений коньячной продукции независимо от классов летучих соединений.
В качестве прототипа изобретения выбран способ анализа с использованием простой перегонки для пробоподготовки образца.
Установка для простой перегонки схематично изображена на фиг.1.
На фиг.1 элементом 1 обозначена круглодонная перегонная колба, в которую наливают определенный объем коньяка. Круглодонную перегонную колбу (элемент 1 на фиг.1) помещают ее на кипящую водяную баню, обозначенную элементом 2 на фиг.1. Подсоединяют к круглодонной перегонной колбе (элемент 1 на фиг.1) холодильник, обозначенный элементом 3 на фиг.1. Холодильник (элемент 3 на фиг.1) соединен аллонжем, обозначенным элементом 4 на фиг.1, с приемной виалой, обозначенной элементом 5 на фиг.1. Виала (элемент 5 на фиг.1) помещена в емкость со льдом, обозначенную элементом 6 на фиг.1. Температура кипения в круглодонной перегонной колбе (элемент 1 на фиг.1) не превышает 100°С. Летучие вещества, интенсивно выделяющиеся при кипении, охлаждаются в холодильнике и собираются в приемной виале. Процесс перегонки длится менее получаса.
Достоинствами способа являются его простота, дешевизна, быстрота. К недостаткам можно отнести неполное извлечение летучих веществ из образца, так как не все летучие вещества, даже форме азеотропов с этиловым спиртом, имеют температуру кипения ниже 100°С. Нагревание до больших температур невозможно, так как будет происходить частичная карамелизация соединений (например, сахаров).
Задачей изобретения является создание способа анализа винодельческой продукции винодельческой продукции, позволяющего при ее анализе с большей достоверностью определить летучие органические соединения в таком количестве и пропорции, которое отражает характеристики аромата исследуемого образца.
Описание изобретения.
Поставленная задача решается предлагаемым способом анализа в сочетании с пробоподготовкой, заключающимся в криоконцентрации летучих органических соединений.
Способ осуществляют следующим образом: инертный газ (например, азот) проходит через барботер с образцом винодельческой продукции и увлекает за собой летучие вещества, находящиеся как в самом образце, так и, преимущественно, вещества, находящиеся в паровой фазе над образцом, переносит их в ловушку, в которой происходит моментальная криоконденсация и концентрирование. После определенного времени ловушка со сконцентрированными летучими веществами размораживается при комнатной температуре естественным путем и проводится хроматографический анализ полученного экстракта.
Преимуществами такого способа анализа являются простота и доступность способа, хорошая воспроизводимость результатов, исключение внесения дополнительных веществ (например дихлорметана или гексана, необходимых для проведения экстракции другими методами).
Способ оценки содержания летучих компонентов с использованием криоконденсации и одновременной концентрации позволяет преимущественно сконцентрировать летучие компоненты, непосредственно участвующие в создании запаха коньяка. Отгонка компонентов происходит не за счет их температуры кипения, а за счет продувки барботера с образцом инертным газом. При этом на образец не оказывают воздействие высокие температуры, что может привести к трансформации летучих органических соединений.
Летучие вещества в барботере с образцом находятся в равновесном состоянии между газовой фазой и водно-спиртовой фазой образца. Поток газа позволяет, в основном, перенести в ловушку летучие вещества из газовой фазы (которые как раз и обуславливают аромат винодельческой продукции). При этом нарушается равновесие между фазами и из жидкой фазы в газовую поступает «новая порция» летучих веществ. За счет того, что процесс длится 1,5 ч, количество и пропорция летучих веществ, сконцентрированных в ловушке, адекватно отражают аромат исследуемой винодельческой продукции.
Примеры
Анализа винодельческой продукции проводили по разработанному оригинальному способу, система для работы которого представлена на фиг.2.
На фиг.2 элементом 7 обозначен барботер, в который отбирается образец винодельческой продукции в количестве 30 см3. Азот марки ОСЧ из баллона, обозначенного элементом 8 на фиг.2, подавали через блок контроля расхода газа, обозначенный 9 на фиг.2 (расход газа составляет около 50 см3/мин), в барботер (элемент 7 на фиг.2). Барботер (элемент 7 на фиг.2) термостатируется при 25°С в термостате, обозначенным элементом 10 на фиг.2. Для удаления излишков воды использовали трубку, обозначенную элементом 11 на фиг.2, которую предварительно заполняли прокаленным хлоридом кальция. Конденсация летучих компонентов происходила в поглотителе Рихтера, обозначенным элементом 12 на фиг.2, погруженным для охлаждения в сосуд с жидким азотом, обозначенный элементом 13 на фиг.2. Длительность процесса - 1,5 ч. За это время азот, проходящий через барботер (элемент 7 на фиг.2) с исследуемым образцом, обогащается его летучими компонентами, и, попадая в поглотитель Рихтера (элемент 12 на фиг.2), эти летучие компоненты конденсируются.
После окончания процесса поглотитель Рихтера (элемент 12 на фиг.2) вынимают из емкости с жидким азотом (элемент 13 на фиг.2) и нагревают до комнатной температуры естественным путем, после чего полученную жидкость отбирают в виалу для последующего хроматографического анализа.
Анализ образцов коньячной продукции для идентификации индивидуальных летучих соединений проводили с использованием описанного способа пробоподготовки и последующей хроматографированием при указанных условиях.
Хроматографическое разделение проводили на хроматографе Shimadzu GC 2010 с масс-детектором GCMS-QP 2010 на колонке MDN-1 (твердосвязанный метилсиликон длина 30 м, диаметр 0,25 мм) в режиме градиента температур при следующих рабочих параметрах: температура инжектора 200°С, интерфейса 210°С, детектора 200°С. Газ-носитель - гелий. Поток через колонку 2 см3/мин, деление потока 1:2. Параметры масс-детектора: режим регистрации - TIC, диапазон масс 45 - 400 масс/заряд. Время анализа 20 минут.
Примеры полученных результатов с использованием в качестве способов пробоподготовки прототипа изобретения (метод простой перегонки) и самого изобретения.
На фиг.3 и фиг.4 представлены хроматограммы экстрактов из образцов коньячной продукции №1 и №2, подготовленными к хроматографированию методом простой перегонки - прототипа (красные линии) и методом с криоконцентрацией - изобретения (синие линии).
Расшифровка пиков к хроматограммам приведена в таблицах 1 и 2 для образцов №1 и 2 соответственно.
Для первого образца продукции с использованием изобретенного способа анализа удалось обнаружить и установить количества не только веществ, участвующих в формировании аромата продукта (например, этиловые эфиры жирных кислот, бензальдегид), но и веществ, подтверждающих подлинность образца (диэтиловый эфир бутандиовой кислоты - наличие этого вещества свидетельствует о том, что использованный этиловый спирт получен из виноградного сырья).
Во втором образце изобретенный способ анализа позволил выделить вещества, непосредственно участвующие в формировании аромата: при использовании прототипа в качестве способа пробоподготовки образца винодельческой продукции в экстракт попали неэтилированные жирные кислоты (октановая, декановая, тетрадекановая и гексадекановая), которые не вносят существенного вклада в аромат. Эти соединения отсутствуют в экстрате, полученном при использовании изобретения в качестве способа анализа, зато имеется ряд других соединений, формирующих запах продукта.
Таким образом, изобретенный способ анализа позволяет извлечь из образца коньячной продукции как большее число компонентов, так и количество этих компонентов существенно выше, чем при использовании метода простой перегонки. В отличие от метода простой перегонки изобретенный способ позволяет экстрагировать минорные компоненты, участвующие в формировании аромата коньяка.
Литература:
1. Ledauphin J.r.m., Le Milbeau С., Barillier D., Hennequin D. Differences in the Volatile Compositions of French Labeled Brandies (Armagnac, Calvados, Cognac, and Mirabelle) Using GC-MS and PLS- DA // Journal of Agricultural and Food Chemistry - 2010. - №58 - С.7782-7793.
2. Ferrari G., Lablanquie O., Cantagrel R., Ledauphin J., Payot Т., FournierN., Guichard E. Determination of Key Odorant Compounds in Freshly Distilled Cognac Using GC-O, GC-MS, and Sensory Evaluation // J. Agric. Food Chem.- 2004. - №52.- С 5670-5676.
3. Водорев М.М., Субботин B.C. Хроматографический анализ ароматических кислот и альдегидов в винах // Виноделие и виноградарство.- 2001. - №1. - С.19-21.
4. Гаврилина В.А., Мальцева О.И., Сычев С.Н. Экспресс-анализ вина // Напитки.- 2004. - №июнь-июль.- С.94.
5. Zhao Y., Xu Y., Li J., Fan W., Jiang W. Profile of Volatile Compounds in 11 Brandies by Headspace Solid-Phase Microextraction Followed by Gas Chromatography-Mass Spectrometry // Journal of Food Science. - 2009. - №74. - С.С90-С99.
6. Madrera R.R., Gomis D.B., Mangas Alonso J.J. Influence of Distillation System, Oak Wood Type, and Aging Time on Volatile Compounds of Cider Brandy // J. Agric. Food Chem. - 2003. - №51. - C.5709-5714.
7. Савчук С.А., Власов В.Н. Идентификация винодельческой продукции методами высокоэффективной хроматографии и спектрометрии // Виноделие и виноградарство. - 2000. - №5. - С.5-13.
8. Власов В.Н., Маруженков Д.С. Анализ качества бренди из винограда методом хромато-масс-спектрометрии // Виноделие и виноградарство. - 1999. - №1. - С.28-31.
9. Лещев С.М., Заяц М.Ф., Юрченко Р.А., Винарский В.А. Разработка и применение экстракционной пробоподготовки при хромато- масс-спектрометрическом исследовании коньячной продукции // Журнал аналитической химии. - 2008. - №63(7). - С.690-697.
10. Leschchev S.M., Zayts M.F., Yurchenko R.A., Vinarskii V.A. Development and Use of Extraction Sample Preparation in the Chromatographic-Mass Spectrometric Studies of Cognac Products // J. ananytical chemistry. - 2007. - №63(7). - С.629-636.
11. Park Y.J., Kim K.R., Kim J.H. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis // J. Agric. Food Chem. - 1999. - №47- С.2322-2326.
12. Черняга B.C., Шатиришвили И.Ш., Шатиришвили Ш.И., Бериашвили К.И. Комплекс хроматографических методов контроля качества винодельческой продукции // Технология переработки сельскохозяйственных продуктов. - 2006. - №4(1). - С.120-127.
13. Marti M.P., Pino J., Boque R., Busto O., Guasch J. Determination of ageing time of spirits in oak barrels using a headspace-mass spectrometry (HS-MS) electronic nose system and multivariate calibration // Anal. Bioanal. Chem.- 2005. - №382.- С 440-443.
14. Panossian A., Mamikonyan G., Torosyan M., Gabrielyan E., Mkhitaryan S., Tirakyan M., Ovanesyan A. Determination of the Composition of Volatiles in Cognac (Brandy) by Headspace Gas Chromatography-Mass Spectrometry // J. ananytical chemistry. - 2001. - №56(10). - С.945-952.
15. Chatonnet P., Cutzach I., Pons M., Dubourdieu D. Monitoring toasting intensity of barrels by chromatographic analysis of volatile compounds from toasted oak wood // J. Agric. Food Chem.- 1999. - №47. - С.4310-4318.
16. Ledauphin J., Saint-Clair J.F., Lablanquie O., Guichard H., Founier N., Guichard E., Barillier D. Identification of trace volatile compounds in freshly distilled Calvados and Cognac using preparative separations coupled with gas chromatography-mass spectrometry // J. Agric. Food Chem. - 2004. - №52. - С.5124-5134.
17. Кучменко Т.А., Кочетова Ж.Ю., Федорова Е.В., Бондарева Л.П., Шлык Ю.К., Коренман Я.И. Установление грубой фальсификации коньяка с применением матрицы пьезосенсоров // Известия ВУЗов. Пищевая технология. - 2003. - №1. - С.66-69.
18. Watts V.A., Butzke С., Boulton R.B. Study of Aged Cognac Using Solid-Phase Microextraction and Partial Least-Squares Regression // J. Agric. Food Chem. - 2003. - №51. - С.7738-7742.
19. Ebeler S.E., Terrien M.B., Butzke C.E. Analysis of brandy aroma by solid-phase microextraction and liquid-liquid extraction // Journal of the Science of Food and Agriculture. - 2000. - №80. - С.625-630.
20. Schreier P., Drawert F., Winkler F. Composition of neutral volatile constituents in grape brandies // Journal of Agricultural and Food Chemistry. - 1979. - №27. - С.365-372.
21. Муратшин A.M., Нигматуллин А.Т., Шмаков B.C., Галкин Е.Г., Савлучинская Т.Р., Толстиков А.Г. Хромато-масс-спектрометрическое определение природы этанола // Пробл.идентификации алкогольсодержащей продукции. Сборник трудов. - 2001. - №1. - С.92-109.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА КОНЬЯЧНОГО ДИСТИЛЛЯТА | 2022 |
|
RU2791516C1 |
СПОСОБ УСТАНОВЛЕНИЯ НАТУРАЛЬНОСТИ ВИНА | 1998 |
|
RU2156976C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭТАНОЛА НЕВИНОГРАДНОГО ПРОИСХОЖДЕНИЯ В ВИНОГРАДНЫХ ДИСТИЛЛЯТАХ И НАПИТКАХ НА ИХ ОСНОВЕ | 2009 |
|
RU2401428C1 |
СПОСОБ ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ПАРАБЕНОВ (ЭФИРОВ 4-ГИДРОКСИБЕНЗОЙНОЙ КИСЛОТЫ) В ЖИДКИХ И СУСПЕНЗИОННЫХ ФАРМАЦЕВТИЧЕСКИХ ПРЕПАРАТАХ И ЖИДКИХ БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВКАХ | 2014 |
|
RU2564860C1 |
Способ определения натамицина методом капиллярного электрофореза | 2018 |
|
RU2669946C1 |
Способ количественного определения глифосата и N-(фосфонометил)-иминодиуксусной кислоты | 2020 |
|
RU2753453C1 |
Способ количественного определения N-нитрозоаминов: N-диметилнитрозоамин, N-метилэтилнитрозоамин, N-диэтилнитрозоамин, N-дибутилнитрозоамин, N-дипропилнитрозоамин, N-пиперидиннитрозоамин, N-пирролидиннитрозоамин, N-морфолиннитрозоамин, N-дифенилнитрозоамин, в пробах копченых мясопродуктов методом хромато-масс-спектрометрии | 2017 |
|
RU2657822C1 |
СПОСОБ ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ПАРАБЕНОВ (ЭФИРОВ 4-ГИДРОКСИБЕНЗОЙНОЙ КИСЛОТЫ) В ПРОДУКТАХ ПИТАНИЯ, КОСМЕТИКЕ, ФАРМАЦЕВТИЧЕСКИХ ПРЕПАРАТАХ И БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВКАХ | 2013 |
|
RU2532237C1 |
СПОСОБ ПРОИЗВОДСТВА ДИСТИЛЛЯТА | 2010 |
|
RU2421510C1 |
Способ приготовления водки "кизлярка | 1978 |
|
SU753896A1 |
Изобретение относится к виноделию, применительно к исследованию летучих органических соединений коньячной продукции. Способ предусматривает отгонку летучих веществ, преимущественно находящихся в газовой фазе и обуславливающих аромат продукции, с последующим их определением методом газовой хроматографии с масс-детектором, причем отгонку летучих веществ осуществляют при помощи инертного газа азота ОСЧ как газа-носителя с расходом 50 см3/мин с последующей криоконденсацией летучих компонентов в ловушке, без использования и внесения дополнительных химических веществ и воздействия температур. Достигается повышение достоверности и надежности анализа. 2 пр., 2 табл., 4 ил.
Способ анализа винодельческой продукции, предусматривающий отгонку летучих веществ, преимущественно находящихся в газовой фазе и обуславливающих аромат продукции, с последующим их определением методом газовой хроматографии с масс-детектором, отличающийся тем, что отгонку летучих веществ осуществляют при помощи инертного газа азота ОСЧ как газа-носителя с расходом 50 см3/мин с последующей криоконденсацией летучих компонентов в ловушке без использования и внесения дополнительных химических веществ и воздействия температур.
ГОРДЕЕВА Л.Н | |||
и др | |||
Сборник международных методов анализа и оценки вин и сусел | |||
" М, Пищепром, 1993, с | |||
Сепаратор-центрофуга с периодическим выпуском продуктов | 1922 |
|
SU128A1 |
Способ очистки органических растворителей на основе ароматических или насыщенных алифатических углеводородов от растворенного в них кислорода | 1987 |
|
SU1634660A1 |
СПОСОБ ОЦЕНКИ КАЧЕСТВА ПИВА | 2001 |
|
RU2194981C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ НАТУРАЛЬНОСТИ БЕЛЫХ ВИН | 2004 |
|
RU2271000C1 |
Способ определения содержания приведенного экстракта в вине и виноматериалах | 1989 |
|
SU1837224A1 |
ТЕСТ-СПОСОБ ОПРЕДЕЛЕНИЯ ЛЕТУЧЕЙ КИСЛОТНОСТИ ВИНА | 2007 |
|
RU2329495C1 |
СПОСОБ УСТАНОВЛЕНИЯ НАТУРАЛЬНОСТИ ВИНА | 1998 |
|
RU2156976C2 |
КРЫЛОВ В.А | |||
и др | |||
Вестник нижегородского университета им | |||
Н.И.Лоба-чевского, 2011, N 3, (1), с | |||
Светоэлектрический измеритель длин и площадей | 1919 |
|
SU106A1 |
Авторы
Даты
2014-06-27—Публикация
2012-08-31—Подача