СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРЕННЕГО ПРЯМОЛИНЕЙНОГО КАНАЛА В ДЛИННОМЕРНОЙ ТРУБЕ НА ТОКАРНОМ СТАНКЕ Российский патент 2014 года по МПК B23B35/00 

Описание патента на изобретение RU2522051C1

Изобретение относится к области машиностроения, а именно к способам изготовления внутреннего прямолинейного канала в длинномерной трубе на токарном станке.

Известен способ сверления глубоких отверстий малого диаметра, включающий выполнение пилотного заходного отверстия обычным сверлом с последующим сверлением лопаточным сверлом одностороннего резания (см., например, Троицкий Н.Д. «Глубокое сверление», 1971, стр.142, 143). При этом глубокими считаются отверстия, у которых l/d0>5, где l - длина отверстия, a d0 - диаметр отверстия.

Известно специализированное оборудование и приспособления для операций глубокого сверления и растачивания, отличительной особенностью которых является наличие у них системы подвода-отвода СОЖ для принудительного отвода стружки (см., например, Н.Ф. Уткин и др. «Обработка глубоких отверстий», 1988, стр.13-23, 89-93).

Известно, что при изготовлении длинномерных труб малого диметра, используемых, например, в установках высокого давления для получения полипропилена, необходимо осуществлять механическую обработку внутренней поверхности, при этом применение известной схемы сверления глубоких отверстий с отношением l/d0>100 с оптимальным вылетом стебля l (см., например, Н.Ф. Уткин и др. «Обработка глубоких отверстий», 1988, стр.155, рис.7.9) не позволяет получить требуемых глубины расточки и качества обрабатываемой внутренней поверхности длинномерной трубы.

Наиболее близким аналогом заявляемого способа является технология растачивания в трубах-цилиндрах с диаметрами широкого диапазона и длиной более 6000 мм, включающая предварительное и чистовое растачивание труб с использованием специальной оснастки (см., например, И.Ф. Звонцов и др. «Прогрессивная технология растачивания отверстий в трубах из непрецизионных заготовок». Металлообработка, №1 (67)/2012, стр.15-23). При этом данный способ характеризуется сложностью конструкции оснастки, изготовление которой может быть оправдано только в условиях крупносерийного производства. Кроме этого она отличается высокими требованиями, предъявляемыми к заготовкам, когда заготовки называются «непрецизионными», а требования к ним предъявляются гораздо жестче, чем указаны, например, в требованиях к заготовкам по ГОСТ 9940-81 «Трубы бесшовные» или в требованиях к заготовкам по Американским национальным стандартам «Стандартные технические условия на бесшовные и сварные трубы из аустенитных нержавеющих марок стали» (см., например, Ежегодный сборник стандартов ASTM, А 3/2 А 312 М - 01а, таблица 3). Кроме того, практически указанная технология опробована только для труб с мелкими размерами, при этом размеры оснастки для труб большого диаметра вырастают многократно, а вероятность возможности подготовки геометрии труб резко уменьшается.

Задачей заявляемого изобретения является изготовление в длинномерной трубе внутреннего прямолинейного, естественно с определенными допусками, канала, независимо от возможно получившейся при этом разностенности.

Технический результат настоящего изобретения заключается в осуществлении процесса изготовления внутреннего прямолинейного канала в длинномерной трубе, у которой l/d0>100, с использованием при этом универсального токарного станка с некоторой его модернизацией и использованием ранее известных приспособлений.

Указанный технический результат достигают тем, что на токарном станке, который включает патрон, суппорт с резцедержателем, задний центр и люнет, сначала вовнутрь трубы вводят упор и, упираясь в него, устанавливают приспособление, состоящее из 3-кулачкового самоустанавливающегося патрона, фиксируемого с помощью заранее рассчитанных по толщине прокладок между кулачками патрона и внутренней поверхностью трубы, таким образом, чтобы его центр вращения совпал с центром вращения растачиваемой трубы, и внутренней втулки с зацентровочным отверстием, в которое вставляют носик вращающегося центра, установленного в штоке, поджатом задним центром станка, при этом на штоке смонтирована полая оправка длиной меньшей длины штока, имеющая возможность продольного перемещения вдоль него, при этом один конец оправки оборудован креплением и закреплен в резцедержателе станка, а второй оборудован креплением, в котором закреплен токарный резец, затем начинают расточку трубы с оптимальной величиной снятия материала, затем после входа крепления резца вовнутрь трубы оправку зажимают в люнет и продолжают расточку до момента максимально допустимого приближения крепления токарного резца на оправке к установленному внутри 3-кулачковому самоустанавливающемуся патрону, после чего процесс останавливают, разбирают приспособление и трубу переворачивают, зажимая в патроне расточенную сторону трубы, далее вводят вовнутрь упор и, упирая в него, монтируют 3-кулачковый самоустанавливающийся патрон, упираясь его кулачками в уже расточенную поверхность трубы без применения при этом прокладок, после чего вставляют в патрон втулку с зацентровочным отверстием и упирают в него носик вращающегося центра, затем продолжают начатую расточку на оставшейся части трубы до момента соединения с ранее расточенной ее частью.

Благодаря наличию приведенных признаков появляется возможность расточить в длинномерной трубе внутренний ровный прямолинейный, естественно с определенными допусками, канал.

При этом при заявляемом способе для достижения указанного технического результата используют ранее известные приспособления, представленные в патенте РФ №97663 на полезную модель «Приспособление для управления инструментом при обработке днища глубокого глухого отверстия» и патенте РФ №69434 на полезную модель «Устройство для расточки глубоких отверстий».

На фиг.1 изображена общая схема токарного станка при изготовлении внутреннего прямолинейного канала с одной стороны длинномерной трубы; на фиг.2 - общая схема токарного станка при изготовлении внутреннего прямолинейного канала с противоположной стороны.

На фиг.1 и фиг.2: 1 - патрон токарного станка; 2 - суппорт с резцедержателем токарного станка; 3 - задний центр токарного станка; 4 - люнет, установленный на токарном станке; 5 - упор; 6 - 3 - кулачковый самоустанавливающийся патрон; 7 - прокладки между кулачками 3-кулачкового самоустанавливающегося патрона 6 и внутренней поверхностью трубы 8; 8 - растачиваемая труба; 9 - внутренняя втулка; 10 - зацентровочное отверстие внутренней втулки; 11 - вращающийся центр; 12 - шток; 13 - оправка; 14 - крепление, через которое осуществляется закрепление оправки в резцедержателе токарного станка; 15 - крепление на оправке токарного резца; 16 - токарный резец.

В процессе работы на токарном станке, который включает патрон 1, суппорт с резцедержателем 2, задний центр 3 и люнет 4, сначала вовнутрь трубы вводят упор 5 и, упираясь в него, устанавливают приспособление, состоящее из 3-кулачкового самоустанавливающегося патрона 6, фиксируемого с помощью заранее рассчитанных по толщине прокладок 7 между кулачками 3-кулачкового самоустанавливающегося патрона 6 и внутренней поверхностью трубы 8, таким образом, чтобы его центр вращения совпал с центром вращения растачиваемой трубы 8, и внутренней втулки 9 с зацентровочным отверстием 10, в которое вставляют носик вращающегося центра 11, установленного в штоке 12, поджатом задним центром станка 3, при этом на штоке смонтирована полая оправка 13 длиной меньшей длины штока, имеющая возможность продольного перемещения вдоль него, при этом один конец оправки оборудован креплением 14 и закреплен в резцедержателе станка, а второй оборудован креплением 15, в котором закреплен токарный резец 16, затем начинают расточку трубы с оптимальной величиной снятия материала, затем после входа крепления резца 16 вовнутрь трубы 8 оправку 13 зажимают в люнет 4 и продолжают расточку до момента максимально допустимого приближения крепления 15 токарного резца 16 к установленному внутри 3-кулачковому самоустанавливающемуся патрону 6, после чего процесс останавливают, разбирают приспособление и трубу 8 переворачивают, зажимая в патроне 1 расточенную сторону трубы 8, далее вводят вовнутрь упор 5 и, упирая в него, монтируют 3-кулачковый самоустанавливающийся патрон 6, упираясь его кулачками в уже расточенную поверхность трубы 8 без применения при этом прокладок 7, после чего вставляют в патрон втулку 9 с зацентровочным отверстием 10 и упирают в него носик вращающегося центра 11, затем продолжают начатую расточку на оставшейся части трубы 8 до момента соединения с ранее расточенной ее частью.

В качестве конкретного примера можно привести данные о необходимости расточить на одинаковое прямолинейное отверстие 16 труб из стали AISI 321 с внутренним диаметром, равным 470 мм, толщиной стенки 30 мм и длиной 5500 мм. После их обмера выявлено максимальное биение 7 мм посередине длины труб. Величина расточки принята 16 мм на диаметр, а толщина одной из прокладок - равной 10,58 мм под кулачок 3-кулачкового самоустанавливающегося патрона. Под два другие кулачка прокладки не требуются.

Похожие патенты RU2522051C1

название год авторы номер документа
УСТРОЙСТВО ФИКСАЦИИ КОРПУСА РАКЕТНОГО ДВИГАТЕЛЯ НА ТОКАРНОМ СТАНКЕ 2019
  • Бахно Александр Львович
  • Чуприков Артём Олегович
  • Курочкин Вячеслав Викторович
RU2740293C1
Способ обработки длинномерных цилиндрических отверстий 2015
  • Санаев Надир Кельбиханович
  • Тынянский Владимир Павлович
RU2616724C2
Способ обтачивания наружной поверхности прецизионной длинномерной трубы 2019
  • Катаев Юрий Сергеевич
  • Волынский Александр Аркадьевич
  • Бычков Алексей Петрович
RU2722940C1
Оправка разжимная для исправления деформации отверстия прецизионных тонкостенных длинномерных труб в процессе наружной обработки 2019
  • Катаев Юрий Сергеевич
  • Волынский Александр Аркадьевич
  • Никулин Александр Николаевич
RU2759818C2
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ТИПА ПОЛЫХ ЦИЛИНДРОВ, УСТРОЙСТВО ДЛЯ ИХ КРЕПЛЕНИЯ В ОБРАБАТЫВАЮЩЕМ СТАНКЕ И ЛИНИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА. 1993
  • Циглер М.Б.
  • Власов Е.Н.
  • Таранушич Д.А.
  • Солдатов Ю.П.
  • Аксенов А.П.
  • Кузнецов Н.Е.
RU2049648C1
ТОКАРНЫЙ СТАНОК ДЛЯ ОБРАБОТКИ ТРУБ И СПОСОБ ОБРАБОТКИ ТРУБ НА ТОКАРНОМ СТАНКЕ 2012
  • Воскобойник Андрей Александрович
  • Сосенков Максим Анатольевич
  • Яковенко Валерий Иванович
RU2524024C2
Способ сверления глубокого отверстия в заготовке на универсальном токарном станке 2016
  • Комаишко Сергей Георгиевич
  • Кулик Георгий Николаевич
  • Тимофеев Александр Владимирович
  • Касимов Альберт Илдарович
RU2630732C1
Станок для обработки сферических поверхностей колец подшипников качения 1983
  • Шевелев Петр Николаевич
  • Гольдштейн Моисей Ильич
  • Кострыкин Петр Афанасьевич
SU1110547A1
СПОСОБ ИЗГОТОВЛЕНИЯ СТВОЛА АРТИЛЛЕРИЙСКОГО ОРУДИЯ 1999
  • Шендеров И.Б.
  • Наседкин В.И.
  • Малафеев А.С.
  • Родионов В.В.
  • Тихонов В.Н.
  • Кузнецов С.В.
  • Пигалев Р.М.
RU2164202C2
СПОСОБ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ДЛИННОМЕРНОЙ ТРУБЫ 2011
  • Комаишко Сергей Георгиевич
  • Комаишко Андрей Георгиевич
  • Кулик Георгий Николаевич
  • Моисей Михаил Вильгельмович
  • Суздаль Константин Валерьевич
  • Тонконог Антон Юрьевич
RU2457081C1

Иллюстрации к изобретению RU 2 522 051 C1

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРЕННЕГО ПРЯМОЛИНЕЙНОГО КАНАЛА В ДЛИННОМЕРНОЙ ТРУБЕ НА ТОКАРНОМ СТАНКЕ

Способ осуществляют на токарном станке, содержащем патрон, суппорт с резцедержателем, задний центр и люнет. Для расширения технологических возможностей универсального токарного станка сначала внутрь трубы вводят упор и с упором в него устанавливают приспособление, состоящее из 3-кулачкового самоустанавливающегося патрона, фиксируемого с помощью заранее рассчитанных по толщине прокладок между кулачками патрона и внутренней поверхностью трубы, таким образом, чтобы его центр вращения совпал с центром вращения растачиваемой трубы, и внутренней втулки с зацентровочным отверстием, в которое вставляют носик вращающегося центра, установленного в штоке, поджатом задним центром токарного станка. При этом на штоке смонтирована полая оправка, длина которой меньше длины штока, имеющая возможность продольного перемещения вдоль него, причем один конец оправки оборудован креплением и закреплен в резцедержателе станка, а второй оборудован креплением, в котором закреплен токарный резец. Затем начинают расточку трубы с оптимальной величиной снятия материала, затем после входа крепления резца вовнутрь трубы оправку зажимают в люнет и продолжают расточку до момента максимально допустимого приближения крепления токарного резца на оправке к установленному внутри 3-кулачковому самоустанавливающемуся патрону. После чего процесс останавливают, разбирают приспособление, а трубу переворачивают, зажимают в патроне расточенную сторону трубы, далее вводят вовнутрь упор и с упором в него монтируют 3-кулачковый самоустанавливающийся патрон, упираясь его кулачками в уже расточенную поверхность трубы без применения при этом прокладок, после чего вставляют в патрон втулку с зацентровочным отверстием и упирают в него носик вращающегося центра. Затем продолжают расточку на оставшейся части трубы до момента соединения с ранее расточенной ее частью. 2 ил.

Формула изобретения RU 2 522 051 C1

Способ изготовления внутреннего прямолинейного канала в длинномерной трубе на токарном станке, содержащем патрон, суппорт с резцедержателем, задний центр и люнет, отличающийся тем, что сначала внутрь трубы вводят упор и с упором в него устанавливают приспособление, состоящее из 3-кулачкового самоустанавливающегося патрона, фиксируемого с помощью заранее рассчитанных по толщине прокладок между кулачками патрона и внутренней поверхностью трубы, таким образом, чтобы его центр вращения совпал с центром вращения растачиваемой трубы, и внутренней втулки с зацентровочным отверстием, в которое вставляют носик вращающегося центра, установленного в штоке, поджатом задним центром токарного станка, при этом на штоке смонтирована полая оправка, длина которой меньше длины штока, имеющая возможность продольного перемещения вдоль него, причем один конец оправки оборудован креплением и закреплен в резцедержателе станка, а второй оборудован креплением, в котором закреплен токарный резец, затем начинают расточку трубы с оптимальной величиной снятия материала, затем после входа крепления резца вовнутрь трубы оправку зажимают в люнет и продолжают расточку до момента максимально допустимого приближения крепления токарного резца на оправке к установленному внутри 3-кулачковому самоустанавливающемуся патрону, после чего процесс останавливают, разбирают приспособление, а трубу переворачивают, зажимают в патроне расточенную сторону трубы, далее вводят вовнутрь упор и с упором в него монтируют 3-кулачковый самоустанавливающийся патрон, упираясь его кулачками в уже расточенную поверхность трубы без применения при этом прокладок, после чего вставляют в патрон втулку с зацентровочным отверстием и упирают в него носик вращающегося центра, затем продолжают расточку на оставшейся части трубы до момента соединения с ранее расточенной ее частью.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522051C1

БРАГОПЕРЕГОННЫЙ АППАРАТ 1940
  • Малченко А.Л.
  • Чистяков М.П.
  • Кюнсман А.Г.
SU69434A1
Устройство для растачивания глубоких отверстий 1973
  • Диперштейн Михаил Бенцианович
  • Качоровский Алексей Борисович
SU536894A1
Головка для расточки глубоких отверстий 1987
  • Кизим Валентин Иванович
  • Семилетов Алексей Прокофьевич
  • Перлитер Ева Рахмаиловна
  • Васильцов Степан Иосифович
  • Клауч Дмитрий Николаевич
  • Альшанников Валерий Павлович
  • Шаповалов Николай Леонидович
SU1414513A1
СПОСОБ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ДЛИННОМЕРНОЙ ТРУБЫ 2011
  • Комаишко Сергей Георгиевич
  • Комаишко Андрей Георгиевич
  • Кулик Георгий Николаевич
  • Моисей Михаил Вильгельмович
  • Суздаль Константин Валерьевич
  • Тонконог Антон Юрьевич
RU2457081C1
CN 102152084 A,17.08.2011

RU 2 522 051 C1

Авторы

Комаишко Сергей Георгиевич

Кулик Георгий Николаевич

Суздаль Константин Валерьевич

Тимофеев Алексей Владимирович

Даты

2014-07-10Публикация

2012-12-11Подача