СПОСОБ ОЧИСТКИ МЕТИЛМЕТАКРИЛАТА Российский патент 2014 года по МПК C07C67/60 C07C43/303 C07C47/04 C07C69/54 

Описание патента на изобретение RU2523228C2

Настоящее изобретение относится к способу очистки, в частности к способу очистки метилметакрилата (ММА).

ММА - хорошо известное химическое соединение, которое имеет широкое применение, но главным образом его используют как мономер в производстве полиметилметакрилата (ПММА). ПММА часто получают в виде тонких листов, из которых можно формовать разнообразные предметы, требуемые для определенного применения.

Для получения ПММА важно использовать ММА высшей степени чистоты, потому что даже низкое содержание примеси может привести к изделию из ПММА, имеющему мутный, непрозрачный или выцветший внешний вид. Кроме того, низкое содержание примести в ММА может привести к изменению структурных свойств изделия из ПММА, что может иметь нежелательные эффекты. Таким образом, важно иметь возможность получения ММА, мономера ПММА, высшей степени чистоты, чтобы попытаться предотвратить возникновение данных проблем.

ММА можно получать многими способами, например реакцией ацетонциангидрина, метанола и концентрированной серной кислоты; окислением третичного бутилового спирта в метакролеин, а затем в метакриловую кислоту с последующей этерификацией метанолом; в качестве альтернативы, катализируемыми реакциями, как описано в патенте EP 1073517. Такие реакции и многие другие, известные в литературе, дают поток ММА, который обычно содержит примеси, способные создавать обсуждаемые выше проблемы, когда ММА полимеризуется с образованием ПММА. Соответственно, обычно пытаются очистить поток ММА перед полимеризацией. Известно отделение примесей, которые значительно отличаются от ММА по температуре кипения, путем дистилляции. Однако такой способ разделения трудно осуществить, если примеси и ММА имеют близкие температуры кипения.

Японский патент 58-183641 описывает использование кислого катализатора для обработки примесей в сыром метилметакрилате.

Японская патентная заявка 63-127952 предлагает использовать соединения, содержащие сульфокислотные группы, для обработки метилметакрилата высокой чистоты.

Патент США 4625059 (патентообладатель Mitsubishi Petrochemical) описывает использование кислой ионообменной смолы в неподвижном слое для отделения примесей от сырого ММА.

Таким образом, сырой ММА, полученный различными способами, содержит весьма разнообразные примеси, которые трудно отделять дистилляцией. ММА, полученный конденсацией формальдегида с метилпропионатом, содержит дополнительно другие еще не определенные примеси, например цветообразующие соединения, которые не описаны в ранее известных способах получения ММА.

Целью аспектов настоящего изобретения является предложение решения проблемы отделения данных или других примесей при очистке ММА.

По первому аспекту настоящего изобретения, предлагается способ очистки метилметакрилата (ММА), состоящий в контакте содержащего примеси жидкого ММА с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже:

где R5 и R6 независимо выбирают из углеводородов C1-C12, предпочтительно алкила, алкенила или арила C1-C12, как определено в настоящем изобретении, или H, предпочтительнее алкила C1-C10 или H, наиболее предпочтительно алкила C1-C6 или H, особенно метила или H;

X представляет собой O или S, предпочтительно O;

n является целым числом от 1 до 100, предпочтительно от 1 до 10, предпочтительнее от 1 до 5, особенно 1-3;

и m имеет значение 1 или 2, предпочтительно 1.

В наиболее предпочтительном варианте осуществления соединение I получают из формальдегида в присутствии метанола и/или воды. В таком случае соединение I можно определить как пригодный источник формальдегида. Во избежание сомнения пригодный источник формальдегида означает любой равновесный состав, который может служить источником формальдегида. Его примеры включают, без ограничения, метилаль (1,1- диметоксиметан), полиоксиметилены -(CH2-O)i-, где i=1-100, формалин (формальдегид, метанол, вода) и другие равновесные составы, например смесь формальдегида, метанола и метилпропионата.

Как правило, полиоксиметилены - высшие формали формальдегида и метанола CH3-O-(CH2-O)i-CH3 («формаль-i»), где i=1-100, предпочтительно 1-5, особенно 1-3, или другие полиоксиметилены, содержащие, по меньшей мере, одну неметильную концевую группу. Таким образом, источником формальдегида может также служить полиоксиметилен R1-O-(CH2-O-)iR2, где R1 и R2 могут быть одинаковыми или разными группами, и, по меньшей мере, одну из них выбирают из алкильной группы C2-C10, например R1=изобутил и R2=метил.

Предпочтительно, формальдегид или количество формальдегида, которое можно выделить из пригодного источника формальдегида, присутствует в концентрации 0,01-0,1% от массы жидкого ММА.

Предпочтительно, пригодный источник формальдегида выбирают из 1,1-диметоксиметана, высших формалей формальдегида и метанола, например CH3-O-(CH2-O)i-CH3, где i=2 или больше, как указано выше, формалина или смеси, содержащей формальдегид, метанол и метилпропионат.

Предпочтительно, термин «формалин» означает смесь формальдегида, метанола и воды в соотношении 25-65:0,01-25:25-70% мас. Предпочтительнее, термин «формалин» означает смесь формальдегида, метанола и воды в соотношении 30-60:0,03-20:35-60% мас.

Наиболее предпочтительно, термин «формалин» означает смесь формальдегида, метанола и воды в соотношении 35-55:0,05-18:42-53% мас.

Предпочтительно, смесь формальдегида, метанола и метилпропионата содержит менее 5% мас. воды.

Предпочтительнее, смесь формальдегида, метанола и метилпропионата содержит менее 1% мас. воды. Наиболее предпочтительно, смесь формальдегида, метанола и метилпропионата содержит 0,1-0,5% мас. воды.

Предпочтительно, пригодный источник формальдегида имеет температуру кипения в пределах от 69 до 73°C при абсолютном давлении 0,75 бар.

Предпочтительно, формальдегид или его источник смешивают с загрязненным жидким ММА до контакта с сульфокислотной смолой. Как правило, в непрерывном или полунепрерывном процессе поток загрязненного жидкого ММА смешивают с потоком, содержащим формальдегид или его источник, с образованием объединенного жидкого потока перед контактом с сульфокислотной смолой. Формальдегид, таким образом, присутствует в объединенном жидком потоке в концентрации 0,01-0,1% мас.

В качестве альтернативы или дополнения, источник формальдегида может присутствовать как примесь в ММА, предпочтительно как примесь с близкой температурой кипения, до контакта с сульфокислотной смолой. В таких случаях пропускание загрязненного ММА через слой ионообменной смолы приводит к удалению или уменьшению концентрации источника формальдегида и/или изменению в его составе тяжелого или легкого компонента, который можно легко отделить от ММА дистилляцией.

Предпочтительно, примесью с близкой температурой кипения, которая присутствует в ММА, является формаль-2 (CH3-O-(CH2-O)2-CH3).

Предпочтительно легким компонентом по отношению к отделению от ММА является диметоксиметан. Предпочтительно диметоксиметан отделяют от ММА дистилляцией.

Предпочтительно, способ очистки по настоящему изобретению осуществляют при температуре 25-100°C. Предпочтительнее, данный способ осуществляют при температуре 40-90°C. Еще предпочтительнее, данный способ осуществляют при температуре 50-80°C. Наиболее предпочтительно, данный способ осуществляют при температуре 50-70°C.

Предпочтительно сульфокислотная смола составляет уплотненный слой. Предпочтительно, сульфокислотная смола содержит сильнокислую макропористую смолу на основе полимера. Наиболее предпочтительно, сульфокислотная смола представляет собой перекрестносшитую полистироловую смолу в виде сферических шариков размером от 0,4 до 1,64 мм, которая содержит 0,5-3,0 экв/л сульфокислотных групп (предпочтительно 0,7-2,5 экв/л) и имеет крупнопористую структуру со средним диаметром пор от 15 до 90 нм (предпочтительно 20-70 нм), удельную площадь поверхности от 15 до 100 м2/г (предпочтительно 20-80 м2/г) и удельный объем пор, измеряемый по степени удерживания воды влажной смолой, от 30 до 80% (предпочтительно 40-70%). Предпочтительно, кислая ионообменная смола является макросетчатой смолой.

Предпочтительно, в данном способе очистки также присутствует, по меньшей мере, один сложный эфир карбоновой кислоты. Предпочтительно, данный сложный эфир карбоновой кислоты выбирают из метилового, этилового или пропилового эфира любой карбоновой кислоты C2-C6 с линейной или разветвленной цепью. Предпочтительнее, данный сложный эфир, по меньшей мере, одной карбоновой кислоты выбирают из метилового или этилового эфира любой карбоновой кислоты C2-C4 с линейной или разветвленной цепью. К примерам пригодных сложных эфиров карбоновых кислот относятся, без ограничения, метилпропионат, этилпропионат, пропилпропионат, метилбутаноат, метилизобутират, этилбутаноат, пропилбутаноат, бутилбутаноат. В предпочтительном варианте осуществления, в данном способе очистки также присутствуют метилпропионат или метилизобутират.

Как правило, в непрерывном или полунепрерывном процессе, по меньшей мере, один сложный эфир карбоновой кислоты уже присутствует в потоке загрязненного жидкого ММА до контакта с сульфокислотной смолой. Следовательно, в таких вариантах осуществления, как правило, по меньшей мере, один сложный эфир карбоновой кислоты составляет часть объединенного жидкого потока.

Как правило, примеси имеют температуру кипения, которая делает неэффективным разделение дистилляцией. Как правило, разность температур кипения примесей и ММА не превышает 15°C. Чаще разность температур кипения примесей и ММА не превышает 10°C. В большинстве случаев разность температур кипения примесей и ММА не превышает 5°C. Обычно температуры кипения примесей и ММА приблизительно совпадают, т.е. различаются в пределах 1-2°C. Примеси, температура кипения которых в чистом виде отличается от температуры кипения ММА более чем на 15° и которые проявляют неидеальное поведение при дистилляции в смеси с ММА и другими примесями, трудно отделять от ММА дистилляцией вследствие физических эффектов. К примерам таких физических эффектов относится образование азеотропных смесей с высокой или низкой температурой кипения.

Показано, что настоящее изобретение особенно полезно для отделения некоторых примесей от загрязненного жидкого ММА. Показано, что данные примеси могут содержать изобутиральдегид или соединение, которое выделяет изобутиральдегид при воздействии сульфокислотной ионообменной смолы. К примерам таких соединений относятся моно- или диацетали изобутиральдегида и разветвленного или линейного спирта C1-C6, в частности 2,2-диметоксипропана и металлилового спирта.

Отделение изобутиральдегида с помощью сочетания формальдегида и смолы выгодно, несмотря даже на то, что изобутиральдегид отделяют от ММА как примесь с меньшей температурой кипения.

Отделение изобутиральдегида в колонне для низкокипящих примесей вызывает риск инициирования полимеризации смесью изобутиральдегида и кислорода в верхних погонах колонны для низкокипящих примесей, которые содержат, главным образом, ММА и должны насыщаться кислородом для эффективности стабилизаторов полимеризации.

Кроме того, рециркуляция изобутиральдегида вызывает его медленную конверсию в изобутанол над катализатором. Изобутанол попадает в чистый продукт ММА и снижает его качество, а также создает проблемы в тонких листах, потому что он реагирует с инициаторами полимеризации, таким образом, повышая расход данных инициаторов, которые обязятельно окрашиваются в непрореагировавшей и прореагировавшей (с изобутанолом) формах. Эта проблема возникает при получении полимера (оргстекла) аквариумного качества и в некоторых других случаях, в которых требуется очень низкое содержание инициаторов.

К другим успешно отделяемым примесям относятся произвольно замещенные диены C4-C20. Показано, что настоящее изобретение особенно полезно для отделения таких диенов. К полезным замещенным диенам, которые можно отделять, относятся диены C4-C20, содержащие от одного до четырех алкильных заместителей C1-C6, например моно- или диалкилгексадиены. К примерам диенов относятся, без ограничения, любые из следующих: 2,5-диметил-2,4-гексадиен; 2,5-диметил-1,5-гексадиен, 2-метил-1,5-гексадиен; транс-2-метил-2,4-гексадиен; цис-2-метил-2,4-гексадиен; 2-метил-3,5-гексадиен; 2-метил-1,3-гексадиен; 2,5-диметил-1,3-гексадиен и 1,6-гептадиен.

Кроме того, примеси могут также содержать произвольно замещенные триены C6-C20. К примерам триенов относится, без ограничения, любой из следующих: гептатриен и циклогептатриен.

Показано, что настоящее изобретение особенно эффективно для отделения диенов C4-C20 или триенов C6-C20 с внутренними енильными атомами углерода с одним или несколькими заместителями, предпочтительно алкильными, предпочтительнее с алкильными заместителями C1-C6, или с конечными енильными атомами углерода с двумя заместителями, предпочтительно алкильными, предпочтительнее с алкильными заместителями C1-C6, потому что енильные атомы углерода могут образовывать третичные карбокатионы. Наиболее предпочтительно использовать настоящее изобретение для отделения произвольно замещенных диенов C4-C20, как определено выше. В частности, к предпочтительным для отделения диенам по настоящему изобретению относятся: транс-2-метил-2,4-гексадиен; цис-2-метил-2,4-гексадиен; 2-метил-3,5-гексадиен; 2-метил-1,3-гексадиен; 2,5-диметил-1,3-гексадиен и 1,6-гептадиен, в частности, транс-2-метил-2,4-гексадиен и цис-2-метил-2,4-гексадиен.

Другие примеси, которые можно удалять способом по настоящему изобретению, также обычно содержат произвольно замещенные ненасыщенные альдегиды и кетоны. К примерам таких альдегидов или кетонов относятся соединения R'C=OR'', где в качестве R' может быть атом водорода, произвольно замещенный алкил, алкенил или арил, предпочтительнее алкил C1-C6, алкенил C1-C6 или арил, и в качестве R'' может быть произвольно замещенный алкил, алкенил или арил, предпочтительнее алкил C1-C6, алкенил C1-C6 или фенил.

Кроме того, 2-метилен-3-бутеналь может также присутствовать и удаляться способом по настоящему изобретению. Данная примесь в противном случае может быть преимущественно цветообразующей в ММА.

К другим подходящим примесям относятся: дивинилкетон, этилвинилкетон, диэтилкетон, этилизопропенилкетон, 3-метилен-1-гексен-4-он, метакролеин, изобутанол, толуол и пентенали, например 3-пентеналь. К другим предпочтительным примесям, которые можно удалять способом по настоящему изобретению, относятся этилвинилкетон и дивинилкетон.

Соответственно, настоящее изобретение особенно полезно для отделения транс-2-метил-2,4-гексадиена, цис-2-метил-2,4-гексадиена, этилвинилкетона и дивинилкетона.

Пригодный способ подготовки ММА перед очисткой в контакте с формальдегидом или источником метилена или этилена состоит в контакте метилпропионата с пригодным источником метилена формулы I, как определено ниже:

где R5 и R6 независимо выбирают из углеводородов C1-C12, предпочтительно алкила, алкенила или арила C1-C12, как определено в настоящем изобретении, или H, предпочтительнее алкила C1-C10 или H, наиболее предпочтительно алкила C1-C6 или H, особенно метила или H;

X представляет собой O или S, предпочтительно O;

n является целым числом от 1 до 100, предпочтительно от 1 до 10, предпочтительнее от 1 до 5, особенно 1-3;

и m=1;

в присутствии пригодного катализатора и, необязательно, в присутствии спирта.

Данный способ можно осуществлять в присутствии, по меньшей мере, одного пригодного стабилизатора. Предпочтительно, чтобы, по меньшей мере, один стабилизатор можно было выбирать из гидрохинона, п-метоксифенола, топанола-А (2-трет-бутил-4,6-диметилфенола) или фенотиазина.

Термин «алкил» при использовании в настоящем изобретении означает, если не указано иное, алкил C1-C10, например, метильную, этильную, пропильную, бутильную, пентильную, гексильную или гептильную группы. Если не указано иное, алкильные группы могут, при наличии достаточного количества атомов углерода, быть линейными или разветвленными (особенно предпочтительными разветвленными группами являются трет-бутильная и изопропильная), насыщенными, циклическими, ациклическими или частично циклическими/ациклическими, незамещенными, замещенными или заканчивающимися одним или несколькими заместителями, в число которых входят атом галогена, цианогруппа, нитрогруппа или OR19, OC(O)R20, C(O)R21, C(O)OR22, NR23R24, C(O)NR25R26, SR29, C(O)SR30, C(S)NR27R28, незамещенный или замещенный арил, или незамещенный или замещенный гетероцикл, где каждая из групп R19-R30 независимо представляет собой атом водорода, атом галогена, незамещенный или замещенный арил или незамещенный или замещенный алкил, или, в случае R21, атом галогена, нитрогруппу, цианогруппу или аминогруппу, и/или углеродную цепь прерывают один или несколько (предпочтительно менее 4) атомов кислорода, серы, кремния или силановые или диалкилсилановые группы или их сочетания.

Термин «Ar» или «арил» при использовании в настоящем изобретении означает содержащие от пяти до десяти членов, предпочтительно от пяти до восьми членов карбоциклические ароматические или псевдоароматические группы, например, фенил, циклопентадиенильный и инденильный анионы и нафтил, причем данные группы могут быть незамещенными или содержать один или несколько заместителей, в том числе незамещенный или замещенный арил, алкил (сама данная группа может быть незамещенной или замещенной или концевой, как определено в настоящем изобретении), гетероцикл (сама данная группа может быть незамещенной или замещенной или концевой, как определено в настоящем изобретении), атом галогена, цианогруппу, нитрогруппу или OR19, OC(O)R20, C(O)R21, C(O)OR22, NR23R24, C(O)NR25R26, SR29, C(O)SR30, C(S)NR27R28, где каждая из групп R19-R30 независимо представляет собой атом водорода, незамещенный или замещенный арил или алкил (сама данная группа может быть незамещенной или замещенной или концевой, как определено в настоящем изобретении), или, в случае R21, атом галогена, нитрогруппу, цианогруппу или аминогруппу.

Термин «алкенил» при использовании в настоящем изобретении означает алкенил C2-C10 и включает этенильную, пропенильную, бутенильную, пентенильную и гексенильную группы. Если не указано иное, алкенильные группы могут, при наличии достаточного количества атомов углерода, быть линейными или разветвленными, циклическими, ациклическими или частично циклическими/ациклическими, незамещенными, замещенными или заканчивающимися одним или несколькими заместителями, в число которых входят атом галогена, цианогруппа, нитрогруппа или OR19, OC(O)R20, C(O)R21, C(O)OR22, NR23R24, C(O)NR25R26, SR29, C(O)SR30, C(S)NR27R28, незамещенный или замещенный арил, или незамещенный или замещенный гетероцикл, где каждая из групп R19-R30 независимо представляет собой атом водорода, атом галогена, незамещенный или замещенный арил или незамещенный или замещенный алкил, или, в случае R21, атом галогена, нитрогруппу, цианогруппу или аминогруппу, и/или углеродную цепь прерывают один или несколько (предпочтительно менее 4) атомов кислорода, серы, кремния, или силановые или диалкилсилановые группы, или их сочетания.

Атомы галогена, которыми перечисленные выше группы могут быть замещены или закончены, включают фтор, хлор, бром и йод.

Термин «гетероцикл», при использовании в настоящем изобретении, означает содержащие от четырех до двенадцати членов, предпочтительно от четырех до десяти членов циклические системы, циклы которых содержат один или несколько гетероатомов, в том числе атомы азота, кислорода, серы и их сочетания, причем данные циклы могут не содержать или содержать одну или несколько двойных связей или могут быть неароматическими, частично ароматическими или полностью ароматическими по своей природе. Данные циклические системы могут быть моноциклическими, бициклическими или сопряженными. Каждая гетероциклическая группа, определенная в настоящем изобретении, может быть незамещенной или содержать один или несколько заместителей, в том числе атом галогена, цианогруппу, нитрогруппу, оксогруппу, алкил (сама данная группа может быть незамещенной или замещенной или концевой, как определено в настоящем изобретении), -OR19, -OC(O)R20, -C(O)R21, -C(O)OR22, -NR23R24, -C(O)NR25R26, -SR29, -C(O)SR30, -C(S)NR27R28, незамещенный или замещенный арил, или незамещенный или замещенный гетероцикл, где каждая из групп R19-R30 независимо представляет собой атом водорода, атом галогена, незамещенный или замещенный арил или незамещенный или замещенный алкил, или, в случае R21, атом галогена, нитрогруппу, аминогруппу или цианогруппу. Таким образом, термин «гетероцикл» означает такие группы, как произвольно замещенный азетидинил, пирролидинил, имидазолил, индолил, фуранил, оксазолил, изоксазолил, оксадиазолил, тиазолил, тиадиазолил, триазолил, оксатриазолил, тиатриазолил, пиридазинил, морфолинил, пиримидинил, пиразинил, хинолинил, изохинолинил, пиперидинил, пиразолил и пиперазинил. Замещение в гетероцикле может происходить при атоме углерода данного гетероцикла или, насколько это возможно, при одном или нескольких гетероатомах.

«Гетероциклические» группы могут также иметь форму N-оксида.

Термин «гетероатомы» при использовании в настоящем изобретении означает атомы азота, кислорода, серы или их сочетания.

В непрерывном процессе, после периода, составляющего, скажем, несколько месяцев, эффективность сульфокислотной смолы может снижаться приблизительно на 20% по сравнению с эффективностью свежей смолы. Такую смолу часто называют «деактивированной». Однако затем было неожиданно обнаружено, что присутствие пригодного источника формальдегида по настоящему изобретению заставляет «деактивированную» смолу отделять примеси со скоростью, близкой к скорости свежей смолы.

Таким образом, по второму аспекту настоящего изобретения, предлагается способ очистки метилметакрилата (ММА), состоящий в контакте содержащего примеси жидкого ММА с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже:

где R5 и R6 независимо выбирают из углеводородов C1-C12, предпочтительно из алкила, алкенила или арила C1-C12, как определено в настоящем изобретении, или H, предпочтительнее из алкила C1-C10 или H, наиболее предпочтительно из алкила C1-C6 или H, особенно метила или H;

X представляет собой O или S, предпочтительно O;

n является целым числом от 1 до 100, предпочтительно от 1 до 10, предпочтительнее от 1 до 5, особенно 1-3;

и m имеет значение 1 или 2, предпочтительно 1, причем сульфокислотная смола, по меньшей мере, частично деактивирована.

В особенно предпочтительном варианте осуществления соединение I получают из формальдегида в присутствии метанола и/или воды. В таком случае, соединение I можно определить как пригодный источник формальдегида. Выражение «сульфокислотная смола, по меньшей мере, частично деактивирована» означает, что эффективность сульфокислотной смолы уменьшилась (по сравнению со свежей смолой) вследствие предыдущего воздействия на смолу загрязнителей, в том числе присутствующих в исходном очищаемом потоке, например загрязненном жидком потоке ММА. Предпочтительно, по меньшей мере, частично деактивированная сульфокислотная смола имеет эффективность менее 99,9% по сравнению с эффективностью свежей смолы. Предпочтительно, по меньшей мере, частично деактивированная сульфокислотная смола имеет эффективность менее 99% по сравнению с эффективностью свежей смолы; как правило, эффективность составляет менее 95%, чаще менее 75%, в частности менее 50%.

Предпочтительно, по меньшей мере, частичная деактивация связана со способностью сульфокислотных смол реагировать, по меньшей мере, с одним диеном. Например, предпочтительно, по меньшей мере, частично деактивированная сульфокислотная смола имеет эффективность менее 50% в реакции, по меньшей мере, с одним диеном по сравнению с эффективностью свежей смолы.

По третьему аспекту настоящего изобретения, предлагается метилметакрилат, например жидкий ММА, содержащий одну или несколько примесей, указанных в настоящем изобретении, который находился в контакте с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже:

где R5 и R6 независимо выбирают из углеводородов C1-C12, предпочтительно из алкила, алкенила или арила C1-C12, как определено в настоящем изобретении, или H, предпочтительнее из алкила C1-C10 или H, наиболее предпочтительно алкила C1-C6 или H, особенно метила или H;

X представляет собой O или S, предпочтительно O;

n является целым числом от 1 до 100, предпочтительно от 1 до 10, предпочтительнее от 1 до 5, особенно 1-3;

и m имеет значение 1 или 2, предпочтительно 1, при нахождении в жидкой фазе.

По четвертому аспекту настоящего изобретения, предлагается полимер, содержащий метилметакрилатные остатки, причем данные метилметакрилатные остатки находились в контакте с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже:

где R5 и R6 независимо выбирают из углеводородов C1-C12, предпочтительно из алкила, алкенила или арила C1-C12, как определено в настоящем изобретении, или H, предпочтительнее из алкила C1-C10 или H, наиболее предпочтительно алкила C1-C6 или H, особенно метила или H;

X представляет собой O или S, предпочтительно O;

n является целым числом от 1 до 100, предпочтительно от 1 до 10, предпочтительнее от 1 до 5, особенно 1-3;

и m имеет значение 1 или 2, предпочтительно 1, при нахождении в фазе жидкого мономера.

Предпочтительно, загрязненный ММА по настоящему изобретению получают конденсацией формальдегида с метилпропионатом. Показано, что по настоящее изобретение особенно полезно для отделения примесей от жидкого ММА, полученного таким способом. Как правило, загрязненный ММА для очистки способом по настоящему изобретению получают конденсацией формальдегида с метилпропионатом в присутствии пригодного основного катализатора и, необязательно, метанола, чтобы предотвратить образование кислоты. Пригодным основным катализатором для реакции конденсации является диоксид кремния, допированный щелочным металлом, например содержащий ионы цезия диоксид кремния (Cs+/SiO2). В таких случаях, пригодный для использования диоксид кремния представляет собой предпочтительно пористый диоксид кремния с большой удельной поверхностью, например силикагель, осажденный силикагель и спеченный пирогенный силикагель. Предпочтительное содержание щелочного металла в катализаторе на основе диоксида кремния находится в пределах от 1 до 10% мас. (в пересчете на металл).

Все признаки, содержащиеся в настоящем изобретении, можно сочетать с любыми из указанных выше аспектов и в любом сочетании.

Далее настоящее изобретение будет проиллюстрировано следующими примерами со ссылкой на чертеж, в котором:

Фиг.1 содержит график отделения дивинилкетона в зависимости от содержания формальдегида в исходном материале.

Примеры

Пример 1

Промывали потоком метанола 100 г смоченной водой сильной сульфокислотной ионообменной смолы Lewatit 2314 (поставщик Lanxess) в стеклянной колонне, наполненной смолой, со скоростью 1 объем слоя в час до тех пор, пока первоначально бурый элюент не становился бесцветным на вид. Затем смолу промывали чистым ММА до снижения концентрации метанола до 100 ч/млн. Помещали 20 г указанной смолы в трехгорлую круглодонную колбу с магнитной мешалкой, термометром и обратным холодильником с водяной рубашкой. В колбу помещали 50 мл образца чистого ММА с добавкой 100 ч/млн 2-метил-1,5-гексадиена. Колбу помещали на подогретую масляную баню и отбирали пробы из колбы пипеткой через определенные промежутки времени. Одну и ту же партию смолы использовали для каждого опыта. Образцы анализировали на газовом хроматографе Varian GC, оборудованном капиллярной колонной CPSil 1701. 2-метил-1,5-гексадиен быстро изомеризовался с образованием 2-метил-2,5-гексадиена. Затем это соединение очень медленно исчезало с образованием 2-метил-2,4-гексадиена. Опыт проводили три раза при 70, 50 и 30°C. Массовые процентные доли всех компонентов приведены в таблицах 1, 3 и 5.

Пример 2

Пример 1 повторяли, но в этом случае 1000 или 7000 ч/млн 1,1-диметоксиметана добавляли к раствору ММА перед нагреванием. Массовые процентные доли всех компонентов приведены в таблицах 2, 4 и 6.

Пример 3

Пример 1 повторяли, за исключением того, что смесь, содержащую по 100 ч/млн 2,5-диметил-1,5-гексадиена и 2,5-диметил-2,4-гексадиена, использовали вместо 100 ч/млн. 2-метил-1,5-гексадиена. Массовые процентные доли всех компонентов при трех различных температурах приведены в таблицах 7, 9 и 11.

Пример 4

Пример 3 повторяли, за исключением того, что 1000 или 7000 ч/млн 1,1-диметоксиметана добавляли к раствору ММА перед нагреванием.

Массовые процентные доли всех компонентов при каждой температуре нагревания приведены в таблицах 8, 10 и 12.

В таблицах 7-12 приведено количество 2,5-диметил-2,4-гексадиена, присутствующего через различные промежутки времени и при различных температурах в присутствии и в отсутствие 1,1-диметоксиметана.

Таблица 1
70°C, 0 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2-метил-1,5-гексадиен 0,0109% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 2-метил-2,5-гексадиен 0,0000% 0,0083% 0,0072% 0,0052% 0,0031% 0,0014% транс-2-метил-2,4-гексадиен 0,0000% 0,0005% 0,0019% 0,0022% 0,0027% 0,0025% цис-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000%

Таблица 2
70°C, 1000 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2-метил-1,5-гексадиен 0,0117% 0,0007% 0,0004% 0,0005% 0,0005% 0,0006% 2-метил-2,5-гексадиен 0,0000% 0,0054% 0,0027% 0,0011% 0,0009% 0,0006% транс-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% цис-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000%

Таблица 3
50°C, 0 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2-метил-1,5-гексадиен 0,0109% 0,0003% 0,0004% 0,0005% 0,0005% 0,0000% 2-метил-2,5-гексадиен 0,0000% 0,0076% 0,0072% 0,0068% 0,0065% 0,0049% транс-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0001% 0,0003% 0,0007% цис-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000%

Таблица 4
50°C, 1000 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2-метил-1,5-гексадиен 0,0111% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 2-метил-2,5-гексадиен 0,0000% 0,0062% 0,0047% 0,0031% 0,0014% 0,0008% транс-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% цис-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000%

Таблица 5
30°C, 0 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2-метил-1,5-гексадиен 0,0132% 0,0002% 0,0002% 0,0002% 0,0002% 0,0001% 2-метил-2,5-гексадиен 0,0000% 0,0067% 0,0070% 0,0065% 0,0065% 0,0063% транс-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% цис-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000%

Таблица 6
30°C, 7000 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2-метил-1,5-гексадиен 0,0121% 0,0007% 0,0002% 0,0002% 0,0000% 0,0000% 2-метил-2,5-гексадиен 0,0000% 0,0064% 0,0052% 0,0031% 0,0009% 0,0000% транс-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% цис-2-метил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000%

В отсутствие 1,1-диметоксиметана 2-метил-1,5-диметилгексадиен быстро изомеризуется в 2-метил-2,5-гексадиен и затем медленно превращается частично в 2-метил-2,4-гексадиен. В присутствии 1,1-диметоксиметана за процессом изомеризации следует быстрое удаление 2-метил-2,5-гексадиена, причем в колбе не обнаруживается 2-метил-2,4-гексадиен.

Таблица 7
30°C, 0 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2,5-диметил-1,5-гексадиен 0,0034% 0,0000% 0,0049% 0,0027% 0,0035% 0,0034% 2,5-диметил-2,4-гексадиен 0,0000% 0,0000% 0,0000% 0,0060% 0,0054% 0,0044%

Таблица 8
30°C, 7000 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2,5-диметил-1,5-гексадиен 0,0069% 0,0023% 0,0024% 0,0027% 0,0023% 0,0025% 2,5-диметил-2,4-гексадиен 0,0082% 0,0068% 0,0039% 0,0018% 0,0000% 0,0000%

Таблица 9
50°C, 0 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2,5-диметил-1,5-гексадиен 0,0082% 0,0006% 0,0009% 0,0008% 0,0008% 0,0011% 2,5-диметил-2,4-гексадиен 0,0088% 0,0111% 0,0119% 0,0118% 0,0120% 0,0117%

Таблица 10
50°C, 1000 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2,5-диметил-1,5-гексадиен 0,0057% 0,0013% 0,0016% 0,0015% 0,0017% 0,0016% 2,5-диметил-2,4-гексадиен 0,0064% 0,0090% 0,0071% 0,0047% 0,0018% 0,0013%

Таблица 11
70°C, 0 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2,5-диметил-1,5-гексадиен 0,0024% 0,0005% 0,0006% 0,0006% 0,0010% 0,0012% 2,5-диметил-2,4-гексадиен 0,0042% 0,0133% 0,0131% 0,0124% 0,0104% 0,0096%

Таблица 12
50°C, 1000 ч/млн 1,1-диметоксиметана
Компонент Время, мин 0 5 10 20 40 60 2,5-диметил-1,5-гексадиен 0,0027% 0,0013% 0,0010% 0,0008% 0,0007% 0,0003% 2,5-диметил-2,4-гексадиен 0,0049% 0,0050% 0,0027% 0,0014% 0,0009% 0,0006%

В отсутствие 1,1-диметоксиметана за быстрой изомеризацией 2,5-диметил-2,5-гексадиена в 2,5-диметил-2,4-гексадиен следует очень медленное разложение последнего. Когда 1,1-диметоксиметан присутствует в растворе, происходит быстрое разложение 2,5-диметил-2,4-гексадиена с образованием другого продукта.

Константы скорости реакции первого порядка для разложения 2-метил-2,5-гексадиена и 2,5-диметил-2,4-гексадиена приведены в таблице 13 для каждого из условий.

Таблица 13 Константа скорости реакции первого порядка, с-1 Концентрация
1,1-диметоксиметана, ч/млн
30°С 50°С 70°С
Константы скорости реакции первого порядка для разложения 2-метил-2,5-гексадиена 0 0,0015 0,007 0,0325 1000 0,0367 0,1147 7000 0,0581 Константы скорости реакции первого порядка для разложения 2,5-диметил-2,4-гексадиена 0 0,0003 0,0063 0,0003 1000 0,0365 0,0812 7000 0,0878

Таким образом, добавление 1,1-диметоксиметана значительно влияет на скорость разложения как 2-метил-2,5-гексадиена, так и 2,5-диметил-2, 4-гексадиена.

Пример 5

Использовали два образца свежей смолы Lewatit 2431:

A. Свежая смола

Ее получали промыванием смолы метанолом, содержащим 200 ч/млн гидрохинона (ГХ), а затем чистым ММА, содержащим 100 ч/млн ГХ.

B. Использованная смола

Использовали образец, через который пропускали непрерывный поток загрязненного ММА в течение 12 суток. Загрязненный ММА получали в процессе получения ММА реакцией конденсации метилпропионата и формальдегида.

Способом по примеру 1 исследовали два образца с помощью реакционной смеси, содержащей загрязненный ММА и цис- и транс-2-метил-2,4-гексадиен в указанных в таблице концентрациях и 100 ч/млн ГХ при 50°C.

Концентрации всех веществ приведены ниже в таблице 14.

Таблица 14 Время воздействия, мин 0 2 5 10 20 30 Свежая смола 0 ч/млн 1,1-диметоксиметана транс-2-метил-2,4-гексадиен 0,0035% 0,0011% 0,0004% 0,0002% 0,0000% 0,0000% цис-2-метил-2,4-гексадиен 0,0040% 0,0003% 0,0001% 0,0001% 0,0000% 0,0000% Использованная смола 0 ч/млн 1,1-диметоксиметана транс-2-метил-2,4-гексадиен 0,0035% 0,0022% 0,0021% 0,0016% 0,0007% 0,0002% цис-2-метил-2,4-гексадиен 0,0040% 0,0014% 0,0008% 0,0007% 0,0003% 0,0001% Свежая смола +1000 ч/млн 1,1-диметоксиметана транс-2-метил-2,4-гексадиен 0,0041% 0,0008% 0,0000% 0,0000% 0,0000% 0,0000% цис-2-метил-2,4-гексадиен 0,0015% 0,0004% 0,0000% 0,0000% 0,0000% 0,0000% Использованная смола +1000 ч/млн 1,1-диметоксиметана транс-2-метил-2,4-гексадиен 0,0041% 0,0001% 0,0000% 0,0000% 0,0000% 0,0000% цис-2-метил-2,4-гексадиен 0,0015% 0,0000% 0,0000% 0,0000% 0,0000% 0,0000%

Изменение концентрации 2-метилгексадиенов с течением времени осложняется их нахождением в равновесии в присутствии кислой ионообменной смолы. Таким образом, концентрации диенов суммировали для исследования кинетики разложения. Было обнаружено, что их суммарная концентрация уменьшалась приблизительно экспоненциально с течением времени. Константы скорости реакции первого порядка, полученные для двух смол с добавлением и в отсутствие содержащих формальдегид веществ, приведены ниже в таблице 15.

Таблица 15 Кинетическое сравнение Свежая смола Использованная смола Без 1,1-диметоксиметана 0,5 0,09 С 1,1-диметоксиметаном 0,8 0,9

Для свежей смолы обнаружено приблизительно 50% увеличение скорости отделения при добавлении 1,1-диметоксиметана. Для ранее использованной смолы скорость отделения в отсутствие 1,1-диметоксиметана была очень низкой и составляла лишь 17% от скорости для свежей смолы. Однако обнаружено десятикратное увеличение активности для использованной смолы в присутствии 1,1-диметоксиметана, при этом ее активность была такой же высокой, как активность свежей смолы.

Данный опыт показывает, что добавление формальдегида особенно эффективно в случае частично деактивированных кислых ионообменных смол.

Пример 6

Жидкий образец ММА, содержащий цис- и транс-2-метил-2,4-гексадиен и другие примеси и 100 ч/млн ГХ, пропускали через неподвижный слой 16 г смолы в реактор из нержавеющей стали с внешним диаметром 0,5 дюйма при атмосферном давлении и 70°C. Скорость потока регулировали, чтобы установить время удержания 31,7 мин. После введения исходного материала образцы оставляли на двойное время удержания, затем отбирали и анализировали пробы. Анализ суммарной концентрации цис- и транс-2-метил-2,4-диметилгексадиена по сравнению с потоком, содержащим необработанный ММА, приведен в таблице 16.

Таблица 16 Свежая смола Начало 80 ч/млн HCHO 200 ч/млн HCHO 320 ч/млн HCHO Источник формалина 1,1-диметоксиметан 0,0061% 0,0005% 0,0005% 0,0000% 37% формалин 0,0061% 0,0012% 0,0000% 0,0000% Обработанный поток, содержащий 81,5% MeP, 10% HCHO, 6,5% метанола, 2% других веществ 0,0061% 0,0007% 0,0006% 0,0000% Использованная смола Начало 80 ч/млн HCHO 200 ч/млн HCHO 320 ч/млн HCHO Источник формалина 1,1-диметоксиметан 0,0061% 0,0018% 0,0017% 0,0000% 37% формалин 0,0061% 0,0026% 0,0004% 0,0004% Обработанный поток, содержащий 81,5% MeP, 10% HCHO, 6,5% метанола, 2% других веществ 0,0061% 0,0014% 0,0015% 0,0006%

Данный опыт показывает отсутствие различия при добавлении формальдегида в виде 1,1-диметоксиметана, формалина или потока раствора формальдегида в безводном метаноле.

Пример 7

Слой, содержащий 750 мл кислой ионообменной смолы Lewatit 2431, использовали для обработки загрязненного ММА, содержащего различные примеси и 100 ч/млн гидрохинона как стабилизатора, при скорости потока 600 г/ч. Поток поддерживали в течение 62 суток. В таблице 17 приведены данные за первый 62-суточный период о средней концентрации различных примесей (ч/млн) в исходном и конечном материале и конверсии веществ для исходного материала, содержащего 17,5 ч/млн формальдегида.

Таблица 17 Исходный материал Конечный материал Конверсия Изобутиральдегид 96,1 37,4 61,1% Метакролеин 3,2 0,1 96,4% Изобутанол 50,7 27,7 45,3% Пентеналь 8,9 0,2 97,4% Толуол 18,9 17,6 7,1%

Затем примеси анализировали через более продолжительные сроки поддержания потока, как показано в таблице 18.

Таблица 18 Сутки 120-126 Исходный материал Конечный материал Средняя конверсия Этилизопропенилкетон 2,7 0,0 100,0%

Для отделения нескольких других компонентов был необходим формальдегид, когда слой смолы использовали в течение продолжительного времени. Фиг.1 и таблица 19 показывают, что для полного отделения дивинилкетона (ДВК) из содержащего его ММА требуется более 60 ч/млн формальдегида.

Таблица 19 Время обработки, суток Содержание формальдегида, ч/млн Доля конверсии дивинилкетона,
%
Время обработки, суток Содержание формальдегида, ч/млн Доля конверсии дивинилкетона,%
115 32 67% 121 204 100% 116 32 72% 121 173 100% 116 39 71% 122 162 100% 117 40 82% 122 143 100% 117 44 67% 123 141 100% 118 48 25% 123 144 100% 118 48 59% 124 143 100% 119 53 63% 124 153 100% 119 111 100% 125 147 100% 120 200 100% 125 152 100% 120 207 100% 126 161 100%

Пример 8

Свежую ионообменную смолу (аликвота 800 мл) промывали метанолом для отделения воды при скорости потока 0,15 г/мл/ч до снижения концентрации воды ниже 0,2% мас. Затем из смолы сливали избыток метанола и промывали ее ММА при такой же скорости потока до снижения концентрации метанола ниже 0,2% мас. Двойной объем используемого в опыте загрязненного ММА, содержащего 111 ч/млн диэтилкетона и 320 ч/млн (формаля-2 CH3-O-(CH2-O)2-CH3), (эквивалентное содержание формальдегида 180 ч/млн), затем пропускали через смолу при скорости потока 2 мл/мин для вытеснения чистого ММА желательным компонентом. Смолу переносили в сосуд и заполняли его образцом загрязненного ММА, затем через образец барботировали воздух через канюлю для его насыщения. Сосуд запаивали и затем помещали на масляную баню при 55°C. Периодически отбирали пробы для анализа. Результаты анализа приведены в таблице 20.

Таблица 20 Время обработки смолы, ч Концентрация диэтилкетона, ч/млн 0,0 111 0,7 103,5 2,5 102,5 3,8 95 4,8 91 5,8 110 6,3 70 8,0 66 9,5 55 11,7 31 14,75 37 15,5 38

Очевидно, способ по настоящему изобретению приводит к значительному уменьшению содержания диэтилкетона.

Обращается внимание на все материалы и документы, которые подаются одновременно или до данного описания в связи с настоящей заявкой и которые открыты для публичной проверки с данным описанием, и содержание всех указанных материалов и документов включается в настоящее изобретение посредством ссылки.

Все признаки, приведенные в данном описании (включая любые сопроводительные пункты формулы изобретения, реферат и чертежи), и/или все этапы любого приведенного в нем способа или процесса могут быть объединены в любом сочетании, за исключением сочетаний, в которых, по меньшей мере, некоторые из данных признаков и/или этапов являются взаимоисключающими.

Каждый признак, приведенный в данном описании (включая любые сопроводительные пункты формулы изобретения, реферат и чертежи), можно заменить альтернативными признаками, служащими той же эквивалентной или аналогичной цели, если иное не указано определенным образом. Итак, если иное не указано определенным образом, каждый приведенный признак является лишь примером видового ряда эквивалентных или аналогичных признаков.

Настоящее изобретение не ограничено описанием приведенных выше вариантов его осуществления. Настоящее изобретение распространяется на любое обновление или любое новое сочетание признаков, приведенных в данном описании (включая любые сопроводительные пункты формулы изобретения, реферат и чертежи), или на любое обновление или любое новое сочетание этапов любых приведенных в нем способов или процессов.

Похожие патенты RU2523228C2

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ИОНООБМЕННОЙ СМОЛЫ 2010
  • Моррис Тревор Хью
RU2531304C2
ПОЛУЧЕНИЕ ЭТИЛЕННЕНАСЫЩЕННЫХ КИСЛОТ ИЛИ ИХ ЭФИРОВ 2009
  • Джонсон Дэвид Уилльям
  • Моррис Тревор Хью
RU2502722C2
СПОСОБ ПОЛУЧЕНИЯ КАРБОНОВЫХ КИСЛОТ С ЭТИЛЕНОВОЙ НЕНАСЫЩЕННОСТЬЮ ИЛИ ИХ ЭФИРОВ И ИХ КАТАЛИЗАТОР 2011
  • Земян Сабина
  • Йорк Иан Эндрю
RU2582603C2
СПОСОБ ПОЛУЧЕНИЯ ЭТИЛЕН-НЕНАСЫЩЕННЫХ КАРБОНОВЫХ КИСЛОТ ИЛИ ИХ СЛОЖНЫХ ЭФИРОВ И КАТАЛИЗАТОР ДЛЯ ЭТОГО 2013
  • Йорк Иан Эндрю
  • Земян Сабина
RU2621687C2
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЭТИЛЕННЕНАСЫЩЕННЫХ КАРБОНОВЫХ КИСЛОТ ИЛИ СЛОЖНЫХ ЭФИРОВ 2018
  • Каллен, Адам
  • Джонсон, Дэвид Уилльям
  • Йорк, Иан Эндрю
RU2784808C2
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЭТИЛЕНОВО-НЕНАСЫЩЕННЫХ КАРБОНОВЫХ КИСЛОТ ИЛИ СЛОЖНЫХ ЭФИРОВ 2020
  • Раннэклс, Джонатан
  • Джонсон, Дэвид Уилльям
  • Хасегава, Тосио
  • Нисида, Кадзуфуми
  • Ниномия, Ватару
RU2817642C2
КАТАЛИЗАТОР НА ОСНОВЕ СМЕШАННЫХ ОКСИДОВ И СПОСОБ ПОЛУЧЕНИЯ КАРБОНОВЫХ КИСЛОТ ИЛИ СЛОЖНЫХ ЭФИРОВ С ЭТИЛЕНОВОЙ НЕНАСЫЩЕННОСТЬЮ 2011
  • Джонсон Дэвид Уилльям
  • Земян Сабина
RU2579516C2
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА, КАТАЛИЗАТОР, ПОСРЕДСТВОМ НЕГО, И СПОСОБ ПОЛУЧЕНИЯ ЭТИЛЕННЕНАСЫЩЕННЫХ КАРБОНОВЫХ КИСЛОТ ИЛИ ЭФИРОВ 2020
  • Каллен, Адам
  • Ниномия, Ватару
RU2822513C2
СОПОЛИМЕР, СОДЕРЖАЩИЙ ОКСАЗОЛИНОВЫЕ МОНОМЕРЫ, И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ СШИВАЮЩЕГО АГЕНТА 2015
  • Цорн Маттиас
  • Дикманн Ивонне
  • Петерс-Штойер Ирис
  • Михль Катрин
RU2704487C2
КАТАЛИТИЧЕСКАЯ СИСТЕМА НА ОСНОВЕ АЗОТИРОВАННОГО СМЕШАННОГО ОКСИДА И СПОСОБ ПОЛУЧЕНИЯ ЭТИЛЕН-НЕНАСЫЩЕННЫХ КАРБОНОВЫХ КИСЛОТ ИЛИ СЛОЖНЫХ ЭФИРОВ 2011
  • Йорк Иан Эндрю
  • Земян Сабина
RU2582996C2

Иллюстрации к изобретению RU 2 523 228 C2

Реферат патента 2014 года СПОСОБ ОЧИСТКИ МЕТИЛМЕТАКРИЛАТА

Изобретение относится к способу очистки метилметакрилата (ММА), включающему осуществление контакта содержащего примеси жидкого ММА с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже, где R5 и R6 независимо выбирают из углеводородов C1-C12 или Н; Х представляет собой О; n является целым числом от 1 до 100; и m имеет значение 1 или 2, и в котором сульфокислотная смола, необязательно, по меньшей мере, частично деактивирована. Способ позволяет удалять с высокой эффективностью примеси альдегидного типа, диены, триены.

2 н. и 16 з.п. ф-лы, 20 табл., 1 ил., 8 пр.

Формула изобретения RU 2 523 228 C2

1. Способ очистки метилметакрилата (ММА), включающий осуществление контакта содержащего примеси жидкого ММА с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже:

где R5 и R6 независимо выбирают из углеводородов C1-C12 или Н;
Х представляет собой О;
n является целым числом от 1 до 100; и
m имеет значение 1 или 2.

2. Способ очистки метилметакрилата (ММА) по п.1, в котором соединение формулы I является пригодным источником формальдегида.

3. Способ очистки метилметакрилата по п.2, в котором пригодный источник формальдегида выбирают из 1,1-диметоксиметана, высших формалей СН3-O-(СН2-О)i-СН3, где i=2 или больше, формалина или смеси, содержащей формальдегид, метанол и метилпропионат.

4. Способ очистки метилметакрилата по п.2, в котором формальдегид или его источник смешивают с загрязненным жидким ММА до контакта с сульфокислотной смолой.

5. Способ очистки метилметакрилата по п.2, в котором источник формальдегида альтернативно или дополнительно присутствует в качестве примеси в ММА.

6. Способ очистки метилметакрилата по п.3, в котором формальдегид или его источник смешивают с загрязненным жидким ММА до контакта с сульфокислотной смолой.

7. Способ очистки метилметакрилата по п.3, в котором источник формальдегида альтернативно или дополнительно присутствует в качестве примеси в ММА.

8. Способ очистки метилметакрилата по п.3, в котором примесью в ММА является формаль-2 (СН3-O-(СН2-О)2-СН3).

9. Способ очистки метилметакрилата по любому из пп.2-8, в котором формальдегид или количество формальдегида, которое можно выделить из пригодного источника формальдегида, присутствует в концентрации 0,01-0,1 мас.% относительно массы жидкого ММА.

10. Способ очистки метилметакрилата по п.9, в котором процесс очистки по настоящему изобретению осуществляют при температуре от 25 до 100°С.

11. Способ очистки метилметакрилата по п.10, в котором разность температур кипения примесей и ММА не превышает 15°С.

12. Способ очистки метилметакрилата по п.11, в котором примеси выбирают из изобутиральдегида, взятого либо в чистом виде, либо в виде соединения, выделяющего его при воздействии сульфокислотной ионообменной смолы, необязательно замещенных триенов С620, необязательно замещенных ненасыщенных альдегидов и кетонов, дивинилкетона, этилвинилкетона, диэтилкетона, этилизопропенилкетона, 3-метилен-1-гексен-4-она, метакролеина, изобутанола, толуола и пентеналей, например 3-пентеналя.

13. Способ очистки метилметакрилата по п.12, в котором данный способ осуществляют в присутствии, по меньшей мере, одного пригодного стабилизатора.

14. Способ очистки метилметакрилата по п.13, в котором в процессе очистки также присутствует, по меньшей мере, один сложный эфир карбоновой кислоты.

15. Способ очистки метилметакрилата по п.4 или 6, в котором в непрерывном или полунепрерывном процессе поток загрязненного жидкого ММА смешивают с потоком, содержащим формальдегид или его источник, с образованием смешанного жидкого потока до контакта с сульфокислотной смолой.

16. Способ очистки метилметакрилата по п.7, в котором объединенный жидкий поток содержит формальдегид в количестве 0,01-0,1 мас.%.

17. Способ очистки метилметакрилата по п.14, в котором в непрерывном или полунепрерывном процессе, по меньшей мере, один сложный эфир карбоновой кислоты уже присутствует в потоке загрязненного жидкого ММА до контакта с сульфокислотной смолой.

18. Способ очистки метилметакрилата (ММА), включающий осуществление контакта содержащего примеси жидкого ММА с сульфокислотной смолой в присутствии формальдегида или пригодного источника метилена или этилена формулы I, как определено ниже:

где R5 и R6 независимо выбирают из углеводородов C1-C12 или Н;
Х представляет собой О;
n является целым числом от 1 до 100; и
m имеет значение 1 или 2; в котором сульфокислотная смола, по меньшей мере, частично деактивирована.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523228C2

US 4625059 A, 25.11.1986
Транспортное средство для перевозки строительных материалов 1979
  • Небов Юрий Григорьевич
  • Дыбнер Михаил Яковлевич
SU783073A1
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
ОБРАБОТКА ФОРМАЛЬДЕГИДСОДЕРЖАЩИХ СМЕСЕЙ 1998
  • Харрисон Стефен Патрик
  • Мартин Джон Стюарт
  • Партен Уилльям Дэвид
RU2217413C2

RU 2 523 228 C2

Авторы

Джонсон Дэвид Уилльям

Моррис Тревор Хью

Даты

2014-07-20Публикация

2009-12-11Подача