СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРЫ ЭВТЕКТИЧЕСКОГО Al-Si СПЛАВА Российский патент 2014 года по МПК C22F1/43 

Описание патента на изобретение RU2525872C1

Изобретение относится к металлургии. Преимущественно изобретение может быть использовано при термической обработке цветного сплава - эвтектического силумина.

Известен способ термической обработки, основой которого является термоциклическая обработка (ТЦО) (Биронт B.C., Аникина В.И., Ковалева А.А. Дилатометрический анализ структурных превращений в алюминиево-кремниевых сплавах при термоциклической обработке // Журнал СФУ; сер. Техника и технологии. 2009. Т.2. Вып.4. С.384-393).

При ТЦО наблюдается дробление хрупких фазовых составляющих эвтектического кристалла за счет деления на отдельные частицы, распределенные в пластичной матрице твердого раствора на основе алюминия.

Однако использование ТЦО не позволяет получить в эвтектическом алюминиево-кремниевом сплаве структуру, состоящую из крупных компактных кристаллов кремния равномерно распределенных в твердом растворе на основе алюминия. Кроме того отрицательной стороной ТЦО является большая трудоемкость процесса.

Наиболее близким по совокупности существенных признаков к предлагаемому способу изменения морфологии микроструктуры сплава и расположения в ней эвтектиктических фаз является сфероидизирующий отжиг, осуществляемый при двухступенчатом нагревании (1-я ступень - до температуры, лежащей ниже неравновесного солидуса; 2-я ступень - до температуры ниже равновесного солидуса). Для большинства литейных промышленных силуминов температура равновесного солидуса составляет 500-550°C (Золоторевский В.С., Белов П.А. Металловедение литейных алюминиевых сплавов. - М.: Металлургия. 2005. С.346).

Основным недостатком известного способа является неполная сфероидизация при нагревании, вызванная наличием гладких поверхностей частиц кремния с пластинчатой морфологией, которую наблюдают в микроскопе в виде иглообразной формы.

Задачей изобретения является получение микроструктуры неэвтектического типа в эвтектическом силумине, которая достигается путем термообработки сплава, включающей нагрев, выдержку и охлаждение. Согласно изобретению нагрев проводят в печи на 5-7°C выше температуры эвтектического равновесия с последующей выдержкой в течение 120-150 мин, затем охлаждают до температуры 420-430°C со скоростью 0,01-0,03 град/с и последующим охлаждением в воде до комнатной температуры.

Нагревание образца на 5-7°C выше температуры эвтектического равновесия приводит к частичному межфазному оплавлению, а ниже заявленного диапазона температур, не достигается необходимый уровень диффузии для укрупнения кремниевых частиц.

Выдержка 120-150 мин обеспечивает протекание контактного плавления в сплаве на межфазных границах. Уменьшение длительности выдержки приводит к структуре игольчатой формы кремниевых кристаллов. Использование более длительного времени выдержки не приводит к значительным результатам изменения в микроструктуре образца.

Охлаждение с печью до температуры 420-430°C со скоростью 0,01-0,03 град/с приводит к полной гетерогенизации кремния в твердом растворе за счет осуществления диффузионных процессов и формирования в микроструктуре образца компактных ограненных кристаллов кремния.

Охлаждение в воде до комнатной температуры предотвращает диффузионные процессы и позволяет зафиксировать образовавшееся распределение фаз.

Способ осуществляется следующим образом:

Отливают образец из сплава Al-11,7% Si (Фиг.1 - микроструктура в литом состоянии, х320) помещают в металлический контейнер и засыпают песком для того, чтобы избежать деформирования и окисления.

Термообработку - нагревание и выдержку - осуществляют при температурах, лежащих в жидкофазной области (фиг.3-а, обозначение 1 на диаграмме равновесия Al-Si), при выдержке продолжительностью 120-150 мин, на межфазных границах происходит преимущественный рост кремниевых кристаллов, путем захвата гетерофазного комплекса атомов кремния.

Охлаждение с печью до температуры 420-430°С (фиг.3-а, обозначение 2 на диаграмме равновесия Al-Si) приводит к наиболее полной гетерогенизации кремния в твердом растворе. Последующее охлаждение в воде сохраняет в закаленном образце гетерогенную структуру, предотвращая диффузионное перераспределение компонентов.

Отличие сфероидизирующего отжига от предлагаемого способа заключается в том, что нагревание образцов и их термообработка происходят при температурах, лежащих в области твердых растворов (фиг.3-б, обозначение 1' и 2' на диаграмме равновесия Al-Si). Именно нагрев выше точки эвтектического равновесия способствует более быстрому прохождению диффузионных процессов, связанных с переносом в жидкофазной области ГФКА кремния из матрицы твердого раствора на основе алюминия.

Использование предлагаемого способа позволяет получать микроструктуру, с отсутствием в ней иглообразных кристаллов кремния.

Техническим результатом заявленного изобретения является разделение микроструктуры эвтектического сплава на отдельные составляющие и объединение этих составляющих, в частности, частиц кремния между собой. В структуре эвтектического силумина после предлагаемой термообработки образуются крупные кремниевые кристаллы, практически равномерно распределенные в алюминиевом твердом растворе (микроструктура образца после термообработки, предложенной в изобретении, фиг.2 при - х320).

Похожие патенты RU2525872C1

название год авторы номер документа
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ПОЛУЧЕНИЯ МЕЛКОКРИСТАЛЛИЧЕСКОЙ ВЫСОКОКРЕМНИСТОЙ АЛЮМИНИЕВО-КРЕМНИЕВОЙ ЛИГАТУРЫ 2007
  • Белов Владимир Юрьевич
  • Качалин Николай Иванович
  • Малинов Владимир Иванович
  • Тихий Григорий Андреевич
  • Никитин Константин Владимирович
RU2365651C2
СПОСОБ ПОЛУЧЕНИЯ ФОЛЬГИ ТВЕРДЫХ ПРИПОЕВ АЛЮМИНИЕВЫХ ЭВТЕКТИЧЕСКИХ СПЛАВОВ 2014
  • Мироненко Виктор Николаевич
  • Васенев Валерий Валерьевич
  • Еремеев Владимир Викторович
  • Татарышкин Виктор Иванович
  • Еремеев Николай Владимирович
RU2559619C1
Высокопрочный литейный алюминиевый сплав 2020
  • Акопян Торгом Кароевич
  • Белов Николай Александрович
  • Летягин Николай Владимирович
RU2754418C1
ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ 2008
  • Белов Николай Александрович
  • Белов Владимир Дмитриевич
  • Молодцов Александр Сергеевич
  • Белов Федор Полиектович
  • Волоскова Надежда Федоровна
  • Козлова Марина Юрьевна
RU2405852C2
Литейный алюминиево-кальциевый сплав 2017
  • Белов Николай Александрович
  • Наумова Евгения Александровна
  • Дорошенко Виталий Владимирович
RU2660492C1
ЛИТЕЙНЫЙ АЛЮМИНИЕВО-КРЕМНИЕВЫЙ СПЛАВ 2017
  • Фролов Антон Валерьевич
  • Алабин Александр Николаевич
  • Гусев Александр Олегович
  • Белов Николай Александрович
RU2659514C1
ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ-(ЭКОНОМНОЛЕГИРОВАННЫЙ ВЫСОКОПРОЧНЫЙ СИЛУМИН) 2010
  • Белов Николай Александрович
  • Белов Владимир Дмитриевич
  • Алабин Александр Николаевич
  • Савченко Сергей Вячеславович
  • Новичков Сергей Борисович
  • Строганов Александр Георгиевич
  • Цыденов Андрей Геннадьевич
RU2441091C2
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2009
  • Белов Николай Александрович
  • Савченко Сергей Вячеславович
  • Белов Владимир Дмитриевич
  • Новичков Сергей Борисович
  • Строганов Александр Георгиевич
  • Цыденов Андрей Геннадьевич
RU2415193C1
Литейный алюминиевый сплав с добавкой церия 2018
  • Белов Николай Александрович
  • Шуркин Павел Константинович
  • Наумова Евгения Александровна
  • Летягин Николай Владимирович
RU2691475C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИТЫХ ИЗДЕЛИЙ ИЛИ ЗАГОТОВОК ИЗ СИЛУМИНА АК7 2008
  • Ерофеев Валерий Константинович
  • Воробьёва Галина Анатольевна
RU2389821C2

Иллюстрации к изобретению RU 2 525 872 C1

Реферат патента 2014 года СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРЫ ЭВТЕКТИЧЕСКОГО Al-Si СПЛАВА

Изобретение относится к металлургии, в частности к способу термообработки алюминиево-кремниевого сплава эвтектического состава. Сплав нагревают с печью до температуры на 5-7°C выше температуры эвтектического равновесия сплава, выдерживают сплав при этой температуре в течение 120-150 мин, затем проводят охлаждение с печью до температуры 420-430°C со скоростью 0,01-0,03 град/с и охлаждение в воде до комнатной температуры. В результате термообработки в сплаве формируется микроструктура, в которой отсутствуют иглообразные кристаллы кремния и состоящая из многогранных кристаллов кремния, распределенных равномерно в матрице твердого раствора на основе алюминия. 3 ил.

Формула изобретения RU 2 525 872 C1

Способ термообработки эвтектического алюминий-кремниевого сплава, включающий нагрев, выдержку и охлаждение, отличающийся тем, что нагрев проводят в печи до температуры на 5-7°C выше температуры эвтектического равновесия с последующей выдержкой при этой температуре в течение 120-150 мин, затем осуществляют охлаждение с печью до температуры 420-430°C со скоростью 0,01-0,03 град/с с последующим охлаждением в воде до комнатной температуры.

Документы, цитированные в отчете о поиске Патент 2014 года RU2525872C1

CN 101445898 A, 03.06.2009
US 20110126947 A1, 02.06.2011
CN 102660701 A, 12.09.2012
JP 9279319 A, 28.10.1997
СОДЕРЖАЩИЕ МАГНИЙ ВЫСОКОКРЕМНИЕВЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ, ИСПОЛЬЗУЕМЫЕ В КАЧЕСТВЕ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ, И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 2008
  • Зуо Лианг
  • Ю Фухиао
  • Жао Ганг
  • Жао Хианг
  • Янг
  • Ли Ян
RU2463371C2

RU 2 525 872 C1

Авторы

Аникина Валентина Ильинична

Жереб Владимир Павлович

Аникин Алексей Игоревич

Бурлуцкая Дарья Михайловна

Ковалева Ангелина Адольфовна

Даты

2014-08-20Публикация

2013-04-23Подача