СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАНИЗКОСЕРНИСТЫХ ДИЗЕЛЬНЫХ ФРАКЦИЙ Российский патент 2014 года по МПК C10G45/08 B01J23/16 B01J23/75 B01J23/755 B01J21/04 

Описание патента на изобретение RU2528986C1

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способам получения низкосернистых и ультранизкосернистых дизельных фракций.

Проблема получения низкосернистых и ультранизкосернистых дизельных фракций (с содержанием серы 10 ppm и менее) с температурой конца кипения 360°C и выше связана со специфическим распределением серусодержащих соединений, а именно преобладанием трудноудаляемой серы в составе алкилбензотиофенов и алкилдибензотиофенов, выкипающих в интервале температур 340-360°C. При вовлечении в процесс гидроочистки алкилбензолов скорость реакции обессеривания резко уменьшается. [1. Р.Г.Теляшев, А.Н.Обрывалина, Г.Г.Васильев и др. Пути решения проблемы получения малосернистого дизельного топлива, Мир нефтепродуктов, №12, 2011. Вестник нефтяных компаний, стр.20-23].

Для решения этой проблемы предлагаются различные способы удаления из состава сырья трудноудаляемых серусодержащих соединений. В частности, путем снижения температуры конца кипения дизельной фракции до 320-340°C. Главным недостатком этого способа является снижение объема целевой фракции.

Известен способ удаления полициклических соединений серы из предварительно гидроочищенной дизельной фракции путем их окисления с последующей адсорбцией продуктов [2. Патент СЩА №6171478, C10G 17/00, 09.01.2001; 3. В.Р.Нигматуллин, И.Р.Нигматуллин, А.Х.Шарипов и др. Получение дизельного топлива с низким содержанием серы. - Нефтепереработка и нефтехимия, №3, 2012, стр.14-17]. Недостатком: способа является сложное аппаратурное оформление, затрудняющее промышленное воплощение.

Известен способ селективного извлечения из дизельных фракций трудноудаляемых серусодержащих соединений жидкостной экстракцией [4. А.А.Гайле, Б.М.Сайфидинов, Л.Л.Колдобская. Экстракционная очистка дизельных фракций от сероорганических соединений и ароматических углеводородов. - Нефтепереработка и нефтехимия, №3, 2011, стр.11-15]. Недостатком способа являются невысокий выход рафинатов (75-85%) и проблемы утилизации отработанных экстрактов.

Предлагаются способы получения ультранизкосернистых дизельных фракций путем гидрооблагораживания на высокоэффективных катализаторах с применением двухреакторных и/или двухстадийных схем с введением свежего подпиточного водорода либо прямотоком, либо противотоком, и применением усовершенствованных внутренних устройств (распределительные устройства, системы подачи квенча и т.д.). [5. Н.Я Виноградова, Л.А. Гуляева, В.А. Хавкин «О современных технологиях глубокой гидроочистки дизельных топлив, - Технология нефти и газа, 2008, №1, стр.4-9]. Для получения целевого продукта с содержанием серы 10 ppm необходимо избыточное давление водорода 4,7-6,8 МПа, а при переработке сырья с высоким содержанием азоторганических соединений - выше 7,0 МПа. Это обстоятельство исключает возможность эффективного применения предлагаемых технологий на российских предприятиях, где давление водорода на установках переработки среднедистиллятных фракций составляет 3,0-4,0 МПа.

Наиболее близок по технической сущности и достигаемому эффекту к предлагаемому техническому решению ″Способ получения малосернистых среднедистиллятных фракций с улучшенными низкотемпературными характеристиками″ [пат. РФ №2311442, 10.05.2006 г.] путем обработки фракций, выкипающих в интервале 178-362°C в среде водорода под давлением 30-70 ати и температуре 320-380°C на оксидных алюмоникель(кобальт)молибденовых катализаторах гидрообессеривания при объемной скорости 2,0-4,0 час-1 для фракций с температурой конца кипения 210-280°C и при объемной скорости 1,5-3,0 час-1 в пересчете на катализатор обессеривания для фракций с началом кипения 210-280°C.

При реализации известного способа получены продукты с содержанием серы 10-60 ppm при переработке фракций с температурой конца кипения не выше 320°C. В продуктах с концом кипения 362°C содержание серы составляло 0,01-0,08 мас.% Как отмечено выше, это связано с особенностями серусодержащих соединений по их строению и количеству во фракциях 340-360°C. Ни один из этих продуктов не отвечает экологическим требованиям Евро-5 (не более 10 ppm).

Низкая эффективность известного способа в обессеривании связана с низкой эффективностью используемых катализаторов гидрообессеривания, синтезируемых путем введения в гидроксид алюминия водного раствора пероксомолибдофосфата аммония и нитрата никеля (или кобальта), перемешивания (гомогенизации), фильтрации, формования, сушки и прокаливания. В основе способа лежит усреднение состава гранул по всей их массе, без регулирования пористой структуры и распределения в ней активных компонентов. Последнее обстоятельство становится критично важным при сверхглубокой степени превращения серусодержащих, когда необходимо обеспечить контакт с активными центрами наиболее трудноудаляемых компонентов типа алкилбензотиофенов и алкилдибензотиофенов, выкипающих в интервале 340-360°C.

Условием такого контакта является протекание реакций гидрогенолиза серусодержащих соединений в пористой структуре катализаторов в кинетической области, т.е. в отсутствие диффузионных ограничений, а желательный результат - исчерпывающее превращение алкилбензотиофенов и алкилдибензотиофенов на высокоэффективных активных центрах.

К числу недостатков относится низкая прочность гранул катализатора - от 1,2 до 1,6 кг/мм диаметра. При этом прочность является одним из главных критериев применимости катализатора в промышленном масштабе при получении ультранизкосернистых дизельных фракций, требующем применения реакторов с загрузкой катализатора до 100 тонн.

Целью предлагаемого технического решения является разработка способа получения ультранизкосернистых дизельных фракций с содержанием серы 1÷10 ppm путем гидрооблагораживания при повышенных температуре и давлении на алюмоникель(кобальт)молибденовых катализаторах с высокой активностью и прочностью.

Поставленная цель достигается путем гидрооблагораживания дизельных фракций при температуре 360÷400°C и давлении водорода не менее 30 ати, объемной скорости не более 1,0 час-1, соотношении H2/сырье не менее 300 нм33 на алюмоникель(кобальт)молибденовых катализаторах, полученных путем адсорбции активных компонентов из низкопроцентных водных растворов солей на поверхность носителей в две стадии с промежуточной сушкой: на первой вносят MoO3, на второй -CoO(NiO)·MoO3 или CoO(NiO).

При этом концентрация однокомпонентных растворов составляет 5-13% MoO3 и 2,5-3,5% CoO(NiO), концентрация бинарных растворов составляет 2,5% CoO(NiO)-5% MoO3, объем адсорбционных растворов V=3Vпор, где Vпор - объем пор адсорбента.

При разработке способа получения катализатора использовано свойство поверхности алюмооксидных носителей адсорбировать MoO3 из водных растворов его соединений. Адсорбционное нанесение MoO3 на поверхность носителя создает благоприятные условия для синтеза активной фазы катализатора в оптимальной оксидной форме CoO(NiO):2MoO3 и распределения ее на поверхности пор внутри гранул катализатора. Это важно при сверхглубокой очистке дизельных фракций до очень низких остаточных концентраций трудноудаляемых серусодержащих соединений для обеспечения максимальной вероятности их контакта с наиболее активными центрами катализатора.

Предварительное нанесение путем адсорбции MoO3 на поверхность носителя, во-первых, обеспечивает однородность поверхности для последующей адсорбции комплексов CoO(NiO)-MoO3 или CoO(NiO) и синтеза активной фазы CoO(NiO)·MoO3 при прокаливании; во-вторых, создает прочное сцепление активной фазы с носителем через взаимодействие MoO3 с Al2O3 и тем самым обеспечивает термоустойчивость катализатора, т.е. способность выдерживать неоднократную окислительную регенерацию.

Ниже приведены примеры реализации способа приготовления катализатора и способа гидрооблагораживания на них дизельных фракций с получением ультранизкосернистых фракций с содержанием серы 1÷10 ppm.

Пример 1.

Получение полупродуктов катализаторов путем адсорбции MoO3 из водных растворов аммония молибденовокислого на алюмооксидные носители различного происхождения. Носители представляют собой экструдаты ⌀2,5-3,0 мм, полученные на основе гидроксида алюминия, произведенного

I - путем переосаждения гидраргиллита по нитратно-алюминатной схеме;

II - путем гидротермальной обработки продукта термохимической активации гидраргиллита при температуре 100-120°C;

III - то же, что II, но при температуре 140-160°C.

Таблица 1 Свойства носителей. Прочность, кг/мм Удельная поверхность, Sуд., м2 pH водной суспензии Объем пор по воде, мл/г I 1,6 300 6,28 70 II 3,0 200 5,8 59 III 1,8 230 6,0 60

Для приготовления раствора адсорбата использован аммоний молибденовокислый (NH4)6Mo7O24·4H2O, концентрацию по содержанию MoO3 задавали исходя из того, чтобы внести 5 мас.% MoO3 при заполнении пор носителя без избытка раствора. Объем раствора адсорбата в 3 раза превосходил объем пор порции носителя. Длительность контакта при перемешивании составляла 1 час с измерением концентрации и pH раствора исходного и через 0,5 и 1,0 часа.

Таблица 2 Характеристики процесса адсорбции MoO3 на носителях. №№ п/п Носитель I Носитель II Носитель III MoO3, г/л в растворе pH раствора МоО3, мас.% в полупродукте MoO3, г/л в растворе pH раствора MoO3, мас.% в полупродукте MoO3, г/л в растворе pH раствора MoO3, мас.% в полупродукте Исх 69 5,14 - 86,5 5,24 - 81,0 5,16 - 0,5 час 38 5,95 8,74 58,0 5,64 8,86 47,8 5,92 8,19 1,0 час 35 6,08 8,92* 35,8 5,8 9,04* 41,5 6,08 8,30* * Эти полупродукты после сушки при температуре 120°C использовали для адсорбции и CoO(NiO)·MoO3 или CoO(NiO) из водных растворов с 3-х кратным превышением объема над объемом пор адсорбента.

Пример 2.

Получение катализаторов.

Характеристики процесса адсорбции CoO(NiO)·MoO3 на полупродукте и состав полученных катализаторов на носителе I приведены в таблице 3. Концентрация CoO(NiO) и MoO3 в растворах задана из расчета внесения 2,5 мас.% CoO(NiO) и 5 мас.% MoO3 при заполнении пор полупродукта раствором без избытка.

Таблица 3 Характеристики процесса адсорбции CoOMoO3 на полупродуктах носителя I. №№ п/п Длительность, час Раствор pH Содержание в растворе, г/л Содержание в катализаторе, мас.% MoO3 CoO MoO3 CoO Кт I-1Co Исх. MoO3 4,0 78,5 47,0 8,92* - 0,5 1,0 CoO Вода 4.11 4,23 37,7 31,5 44,2 44,5 15,55 14,23 4,44 4,08 Кт I-2Со Исх. MoO3 1,1 82,5 49,2 8,92* - 0,5 1,0 СоО Н3РО4 2,22 2,37 71,75 71,0 47,2 48,8 14,43 13,52 4,39 3,58 Вода Кт I-3Со Исх. MoO3 1,95 80,0 51,2 8,92* - 0,5 1,0 CoO HNO3 2,59 44,25 49,5 15,7 4,67 Вода 2,76 32,0 48,25 14,18 4,1 * - полупродукт носителя I.

Адсорбционный характер взаимодействия компонентов раствора с поверхностью носителя I и полупродукта по данным табл.2 и 3 приводит к изменению концентрации по MoO3 и pH растворов во времени, а также к установлению равновесного соотношения CoO:MoO3 активных компонентов, наносимых на поверхность полупродукта во всех случаях, на уровне 1,5:1,0, а в общем слое на поверхности катализатора на уровне 1:(1,9-5-2,5). Равновесие достигается практически в течение 1 часа перемещивания носителя с раствором.

Равновесный характер состава активных компонентов на поверхности алюмооксидного носителя при внесении их путем адсорбции из водных растворов при различных pH наблюдается и при раздельном внесении MoO3 и CoO (табл.4). Так, через 1 час соотношение CoO:MoO3=1:2,02; при этом в исходном растворе при пропитке полупродукта появляется MoO3. По-видимому, избыточное по сравнению с равновесным содержанием MoO3 переходит в раствор.

Таблица 4 Носитель час MoO3, г/л pH MoO3, мас.% CoO, г/л MoO3, г/л pH Содержание в катализаторе MoO3 CoO Al2O3 Исх. 194 5,24 полупродукт 49,5 - 4,78 - - I 0,5 138 6,02 18,4 46 3,3 3,0 14,16 3,35 1,0 130 6,1 46 36,0 2,73 14,27 3,70

Аналогично были получены CoO MoO3 катализаторы на носителях II и III и катализаторы NiO MoO3 на носителях I, II и III.

Таблица 5 №№ п/п Прочность на раскалывание, кг/мм диаметра Мольное соотношение CoO:MoO3 NiO:MoO3 Кт I-1 Co 1,8 1:1,82 Кт I-2 Со 2,2 1:1,96 Кт I-3 Со 1,9 1:1,79 Кт I-1 Ni 2,0 1:1,93 Кт I-2 Ni 2,3 1:1,96 Кт I-3 Ni 1:1,98 Кт II-1 Со 3,31 1:2,17 Кт II-2 Co 4,57 1:2,0 Кт II-3 Co 3,69 1:2,14 Кт II-1 Ni 3,1 1:2,1 Кт II-2 Ni 4,2 1:2,0 Кт II-3 Ni 3,2 1:2,19 Кт III-1 Со 2,45 1:2,44 Кт III-2 Co 3,66 1:2,51 Кт III-3 Co 2,28 1:2,46 Кт III-1 Ni 2,4 1:1,94 Кт III-2 Ni 2,8 1:2,32 Кт III-3 Ni 3,1 1:2,07 Катализатор по прототипу 1,6

Пример 3.

Гидрооблагораживание дизельной фракции на катализаторах по примеру 2.

Сырье - дизельная фракция 180-360°C, содержание серы 0,78 мас.%

Условия процесса гидрооблагораживания: давление водорода 30 ат, соотношение Н2: сырье 300÷400 нм33, температура 360-400°C, объемная скорость 0,3-1 час-1.

Анализ гидрогенизатов на содержание серы по методу Ni-Ренея [ГОСТ 13380-81].

На фиг.1 и 2 представлены данные по остаточному содержанию серы в гидрогенизатах на катализаторах Кт II-2Со и Кт II-2 Ni в сопоставлении с промышленным катализатором РК-231М Co. В табл.6 приведены данные по остаточному содержанию серы в гидрогенизатах катализаторов, синтезированных на носителях I и III, полученных в условиях табл.7.

Активность катализаторов, полученных путем адсорбции на носителях I и III, приведена в табл.6.

Таблица 6 Катализатор Содержание серы в гидрогенизате,ррт Режим 1 Режим 2 Режим 3 Режим 4 Кт I-1 Со 16,5 6,7 3,4 8,0 Кт I-3 Co 10,8, 8,0 Кт I-2 Ni 9,8 7,8 5,9 Кт III-1 Ni 13,7 5,0 3,0 4,3 Кт III-2 Co 9,9 8,3 3,4 Кт III-3 Ni 14,5 8,4 4,7 7,3 Катализатор по [6] 172,6 104,1 93,0 53,9

Таблица 7 Давление водорода 30 ати Т, °C V, час-1 Н2:сырье, нм33 Режим 1 340 0,5 300, Режим 2 360 0,5 300 Режим 3 380 0,8 350 Режим 4 400 1,0 400

Рассмотрение всего объема информации по активности и прочности катализаторов, приготовленных по предлагаемому способу приводит к выводу о высокой эффективности предлагаемого способа получения ультранизкосернистых дизельных фракций с содержанием серы менее 10 ppm при температуре 360-400°C, давлении не менее 30 ати, объемной скорости не более 1 час-1, соотношении водород: сырье не менее 300 нм33.

Похожие патенты RU2528986C1

название год авторы номер документа
КАТАЛИЗАТОР ГИДРОПЕРЕРАБОТКИ И СПОСОБ ГИДРОПЕРЕРАБОТКИ НЕФТЯНОГО И КОКСОХИМИЧЕСКОГО СЫРЬЯ С ЕГО ИСПОЛЬЗОВАНИЕМ 1996
  • Вайль Ю.К.
  • Нефедов Б.К.
  • Дейкина М.Г.
  • Ростанин Н.Н.
RU2102139C1
КАТАЛИЗАТОР ГЛУБОКОЙ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2015
  • Пимерзин Андрей Алексеевич
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Моисеев Алексей Вячеславович
RU2631424C2
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРОВ ДЕМЕТАЛЛИЗАЦИИ НЕФТЯНЫХ ФРАКЦИЙ 2014
  • Смирнов Владимир Константинович
  • Ирисова Капитолина Николаевна
  • Смирнов Олег Владимирович
  • Макеева Галина Николаевна
RU2563252C1
КАТАЛИЗАТОР ГИДРООБЕССЕРИВАНИЯ, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС ГЛУБОКОЙ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2014
  • Пимерзин Андрей Алексеевич
  • Левин Олег Владимирович
  • Ламберов Александр Адольфович
  • Томина Наталья Николаевна
  • Никульшин Павел Анатольевич
  • Иванова Ирина Игоревна
  • Шабанов Павел Гаврилович
  • Егорова Светлана Робертовна
RU2573561C2
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРОВ ДЛЯ ГЛУБОКОЙ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ 2013
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Цветков Виктор Сергеевич
  • Пимерзин Андрей Алексеевич
  • Сафронова Татьяна Николаевна
RU2555708C2
КАТАЛИЗАТОР ГИДРООЧИСТКИ МАСЛЯНЫХ ФРАКЦИЙ И РАФИНАТОВ СЕЛЕКТИВНОЙ ОЧИСТКИ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2012
  • Томина Наталья Николаевна
  • Пимерзин Андрей Алексеевич
  • Антонов Сергей Александрович
  • Максимов Николай Михайлович
  • Дряглин Юрий Юрьевич
RU2497585C2
КОМПЛЕКСНЫЙ СПОСОБ ВОССТАНОВЛЕНИЯ АКТИВНОСТИ КАТАЛИЗАТОРОВ ГИДРОПРОЦЕССОВ 2020
  • Логинов Сергей Александрович
  • Талисман Елена Львовна
  • Шандрик Иван Васильевич
  • Грушевский Сергей Елизарович
RU2748975C1
СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2013
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Леонова Ксения Александровна
  • Будуква Сергей Викторович
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
RU2534999C1
КАТАЛИЗАТОР ГИДРООЧИСТКИ ДИЗЕЛЬНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Логинова Анна Николаевна
  • Круковский Илья Михайлович
  • Михайлова Янина Владиславовна
  • Фадеев Вадим Владимирович
  • Исаева Екатерина Алексеевна
  • Леонтьев Алексей Викторович
RU2566307C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2013
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Леонова Ксения Александровна
  • Будуква Сергей Викторович
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
RU2534997C1

Иллюстрации к изобретению RU 2 528 986 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАНИЗКОСЕРНИСТЫХ ДИЗЕЛЬНЫХ ФРАКЦИЙ

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа получения ультранизкосернистых дизельных фракций путем гидрооблагораживания при повышенных температурах и давлениях на алюмокобальт(или никель)молибденовых катализаторах. Процесс гидрооблагораживания проводят при температуре 360÷400°C, давлении не менее 30 ати, объемной скорости не более 1 час-1, соотношении водород: сырье не менее 300 нм33, а катализатор получают адсорбцией активных компонентов из низкопроцентных водных растворов солей на поверхности алюмооксидных носителей в две стадии с промежуточной сушкой: на первой вносят MoO3, на второй CoO(NiO)·MoO3 или CoO(NiO). Технический результат - получение ультранизкосернистых дизельных фракций. 1 з.п. ф-лы, 2 ил., 7 табл., 3 пр.

Формула изобретения RU 2 528 986 C1

1. Способ получения ультранизкосернистых дизельных фракций путем гидрооблагораживания при повышенных температурах и давлениях на алюмокобальт(или никель)молибденовых катализаторах, отличающийся тем, что процесс гидрооблагораживания проводят при температуре 360÷400°C, давлении не менее 30 ати, объемной скорости не более 1 час-1, соотношении водород: сырье не менее 300 нм33, а катализатор получают адсорбцией активных компонентов из низкопроцентных водных растворов солей на поверхности алюмооксидных носителей в две стадии с промежуточной сушкой: на первой вносят MoO3, на второй CoO(NiO)·MoO3 или CoO(NiO).

2. Способ по п.1 отличающийся тем, что концентрация однокомпонентных растворов составляет 5-13% MoO3 и 2,5-3,5% CoO(NiO), концентрация бинарных растворов CoO(NiO)·MoO3 при pH 1÷4 составляет 2,5% CoO(NiO)-5% MoO3; объем адсорбционных растворов V=3Vпор, где Vпор - объем пор адсорбента.

Документы, цитированные в отчете о поиске Патент 2014 года RU2528986C1

СПОСОБ ПОЛУЧЕНИЯ МАЛОСЕРНИСТЫХ СРЕДНЕДИСТИЛЛЯТНЫХ ФРАКЦИЙ С УЛУЧШЕННЫМИ НИЗКОТЕМПЕРАТУРНЫМИ ХАРАКТЕРИСТИКАМИ 2006
  • Смирнов Владимир Константинович
  • Бабынин Александр Александрович
  • Ирисова Капитолина Николаевна
  • Талисман Елена Львовна
  • Ванина Кафия Мубараковна
  • Шайхетдинов Рамиль Наилевич
RU2311442C1
ШАРИКОВЫЙ КАТАЛИЗАТОР ДЛЯ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2011
  • Красий Борис Васильевич
  • Кустова Тамара Сергеевна
  • Пукшанский Леонид Исидорович
  • Сорокин Илья Иванович
RU2472583C1
SU 1774555 A1, 27.11.1996
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ 2007
  • Исмагилов Зинфер Ришатович
  • Шикина Надежда Васильевна
  • Яшник Светлана Анатольевна
  • Рогов Владимир Алексеевич
  • Керженцев Михаил Анатольевич
  • Пармон Валентин Николаевич
RU2342994C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПИТАТЕЛЬНОГО БАТОНЧИКА 2015
  • Шабалин Дмитрий Владимирович
RU2586529C1

RU 2 528 986 C1

Авторы

Смирнов Владимир Константинович

Ирисова Капитолина Николаевна

Пашкина Людмила Петровна

Талисман Елена Львовна

Даты

2014-09-20Публикация

2013-05-30Подача