СПОСОБ ПОЛУЧЕНИЯ ТРИФТОРАЦЕТАТА ПАЛЛАДИЯ Российский патент 2014 года по МПК C07C51/41 C07C53/10 C07F15/00 

Описание патента на изобретение RU2529036C1

Изобретение относится к области химии платиновых металлов, в частности синтезу соединений палладия, а именно, получению трифторацетата палладия (II), применяемого в качестве реагента для органических синтезов, составной части катализаторов, прекурсоров других соединений палладия, приготовления различных палладий-содержащих материалов и для нанесения металлического палладия методом газофазного пиролиза.

Известен способ получения трифторацетата палладия взаимодействием ацетата палладия с трифторуксусной кислотой, при испарении избытка трифторуксусной кислоты и замещенной уксусной кислоты, и выдерживанием полученного остатка под вакуумом при 40°C (Stephenson N.A., Morehous S.M., Powell A.R., Heffer.J.P., Wilkinson G.//J. Chem. Soc. 1965. №6. p.3632-3640). Недостатком способа является получение вещества в полимерной кристаллической модификации - катена-[Pd(CP3COO)2]n, которое не обладает летучестью, в противоположность молекулярной кристаллической форме - [Pd3(CF3COO)6] (обладающей летучестью). Получение исходного вещества - ацетата палладия требует своей схемы получения, что приводит к расходованию дополнительных реагентов и увеличивает продолжительность всего процесса. При этом для практически полного замещения ацетатной группы трифторацетатом используется большой избыток трифторуксусной кислоты (более чем в 150 раз превышающий стехиометрическое значение), что удорожает получение целевого продукта.

Известен способ получения трифторацетата палладия путем возгона продукта взаимодействия, полученного по предыдущему способу, при нагревании до 190-200°C в вакууме 1.33-0.133 Па и его двойной сублимацией (Гэрбэлэу Н.В., Тимко Г.А., Индричан К.М., Попович Г.А. // Теоретическая и экспериментальная химия. 1986. №3. с.322-330). Недостатком способа является неполный возгон вещества из-за затрудненного перехода в кристаллическом состоянии полимерной модификации трифторацетата палладия в молекулярную и, соответственно, низкий выход продукта (25%).

Известен способ получения пропионата палладия, заключающийся в обработке упаренного раствора азотнокислого палладия ангидридом пронионовой кислоты (Мулагалеев Р.Ф., Кирик С.Д., // Патент РФ №2430926 от 10.10.2011. Бюл. №28.). Упаренный раствор азотнокислого палладия, до введения ангидрида пропионовой кислоты, может быть прекурсором трифторацетата палладия. Данный способ принят за прототип.

Недостатком способа является недостаточная устойчивость этильной группы в пропионовой кислоте или ее ангидриде к нитрующей и окислительной способности катиона нитрония, образующегося в системе азотная кислота - ангидрид пропионовой кислоты. Трифторуксусная кислота или ее ангидрид являются более устойчивыми к таким взаимодействиям.

Техническим результатом, на достижение которого направлено предполагаемое изобретение, является усовершенствование способа получения трифторацетата палладия(II) в кристаллическом монофазовом состоянии [Pd3(CF3COO)6], повышение стабильности синтеза, а так же достижение высокого выхода целевого соединения.

Заданный технический результат достигается тем, что исходный раствор азотнокислого палладия, который был приготовлен растворением палладиевой черни в концентрированной азотной кислоте, упаривают при температуре (40-80)°C до начала кристаллизации нитрата палладия, и в образовавшийся раствор при температуре (30-80)°C добавляют трифторуксусную кислоту в количестве (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия или ангидрид трифторуксусной кислоты в количестве (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия до прекращения кристаллизации полимерного трифторацетата палладия, фильтрации образовавшегося соединения и его перевода в целевой продукт добавлением ацетонитрила при температуре (10-30)°C при массовом соотношении соединение: ацетонитрил - 1:(0.5-2). После перевода полимерного трифторацетата палладия в целевой продукт ацетонитрил испаряют при температуре (10-30)°C.

Сущность способа состоит в том, что образованию целевого трифторацетата палладия в молекулярной трехъядерной форме [Pd3(CF3COO)6] предшествует выделение его полимерной модификации - catena-[Pd(CF3COO)2]n, которая является малорастворимой в реакционной среде и может быть переведена в молекулярную форму перекристаллизацией. Для выделения полимерной формы трифторацетата палладия использовано взаимодействие раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом. При этом с замещением нитратной группы на трифторацетатную происходят процессы ионизации азотной кислоты с образованием катиона нитрония и ангидрида азотной кислоты. Так как N2O5 термически нестабилен и разлагается с образованием диоксида азота и кислорода, которые, в большей части, удаляются из реакционной системы, и это позволяет снизить содержание нитратных соединений. Появление в системе кислородных соединений азота (IV) является условием проявления нитрозирующих агентов, что, по всей видимости, способствует обратимым координационным взаимодействиям палладия и нитрозильной группы, и является ключевым в выборе пути кристаллизации в полимерный карбоксилат.

Перекристаллизация catena-[Pd(CF3COO)2]n, в [Pd3(CF3COO)2] обусловлена большей термодинамической устойчивостью молекулярной трехъядерной формы (которая существует и в газовой фазе). Для реализации такого перехода с высоким выходом целевого соединения важным является подбор растворителя, так как трифторацетат палладия в растворе является реакционноспособным соединением и способен активировать, например, такие растворители как ацетон, простые и сложные эфиры или толуол. Авторские исследования показали, что из доступных растворителей может быть использован ацетонитрил. Но при этом, количественный переход (без побочных процессов активации ацетонитрила) может происходить только без большого избытка растворителя, его высокой чистоте и при относительно умеренных температурах.

В ходе проведенных исследований установлено, что для проведения процесса получения трифторацетата палладия (II) из раствора азотнокислого палладия и трифторуксусной кислоты или ее ангидрида, оптимальными параметрами являются:

- температура упаривания раствора азотнокислого палладия - (40-80)°C;

- упаривание раствора азотнокислого палладия до начала кристаллизации нитрата палладия;

- температура при взаимодействии раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом - (30-80)°C;

- количество добавляемой трифторуксусной кислоты - (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия;

- количество добавляемого ангидрида трифторуксусной кислоты - (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия:

- температура перевода промежуточного полимерного трифторацетата палладия в целевой продукт - (10-30)°C;

- массовое соотношение соединение: ацетонитрил при перекристаллизации - 1:(0.5-2);

- температура испарения ацетонитрила после образования целевого соединения (10-30)°C.

Увеличение температуры упаривания исходного раствора азотнокислого палладия выше 80°C может приводить к частичному разложению кристаллизующегося нитрата палладия до оксида, что из-за его нерастворимости в азотной и трифторуксусной кислотах приводит к загрязнению продукта оксидом палладия или требует дополнительной операции - фильтрования упаренного раствора. Это, в свою очередь, требует увеличения продолжительности процесса. Уменьшение температуры упаривания исходного раствора азотнокислого палладия ниже 40°C приводит к замедлению испарения, что также увеличивает продолжительность процесса.

Упаривание раствора азотнокислого палладия, не достигая кристаллизации нитрата палладия, приводит к увеличению содержания азотной кислоты и воды в реакционном растворе, что в дальнейшем приводит к увеличению расходования трифторуксусной кислоты или ее ангидрида.

Увеличение температуры взаимодействия раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом выше 80°C приводит к уменьшению растворимости трифторуксусной кислоты или ее ангидрида из-за их испарения и удаления из зоны взаимодействия, что увеличивает расход реагентов. Увеличение температуры также может приводить к вскипанию раствора, что может быть причиной частичного выноса вещества из реактора. Уменьшение температуры взаимодействия раствора азотнокислого палладия с трифторуксусной кислотой или ее ангидридом ниже 30°C приводит к недостаточному разложению азотного ангидрида, что не достаточно снижает содержание нитратных соединений и увеличивает растворимость промежуточного продукта - полимерного трифторацетата палладия.

Увеличение количества добавляемой трифторуксусной кислоты более 800% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к излишнему расходованию реагента. Уменьшение количества добавляемой трифторуксусной кислоты менее 600% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к ее недостатку при образовании промежуточного продукта и снижает как его выход, так и целевое соединение.

Увеличение количества добавляемого ангидрида трифторуксусной кислоты более, чем 450% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к излишнему расходованию реагента. Уменьшение количества добавляемого ангидрида трифторуксусной кислоты менее 350% от мольного количества палладия в исходном растворе азотнокислого палладия приводит к его недостатку при образовании промежуточного продукта, что снижает выход всего процесса.

Увеличение температуры перевода промежуточного полимерного трифторацетата палладия в целевой продукт выше 30°C может приводить к реализации побочных химических процессов с участием растворителя (ацетонитрила), что является причиной загрязнения целевого продукта или его необразования. Уменьшение температуры перевода промежуточного полимерного трифторацетата палладия в целевой продукт ниже 10°C требует применения дополнительного охлаждения, что усложняет процесс.

Увеличение массового соотношения соединение: ацетонитрил при перекристаллизации промежуточного полимерного трифторацетата палладия в целевой продукт более 1:0.5 приводит к недостатку растворителя для растворения catena-[Pd(CF3COO)2]n, что приводит к его неполной перекристаллизации и загрязнения целевого соединения. Уменьшение массового соотношения соединение: ацетонитрил при перекристаллизации промежуточного полимерного трифторацетата палладия в целевой продукт менее 1:2 приводит к избытку растворителя, что приводит к избыточному растворению целевого продукта, тем самым уменьшая его выход, или приводит к увеличению продолжительности процесса, необходимого для частичного или полного испарения растворителя.

Увеличение температуры испарения ацетонитрила после образования целевого соединения выше 30°C может приводить к активации побочных химических процессов с участием растворителя (ацетонитрила), что является причиной загрязнения целевого продукта или его полного перевода в нецелевое соединение. Уменьшение температуры испарения ацетонитрила после образования целевого соединения ниже 10°C приводит к замедлению испарения, что увеличивает продолжительность всего процесса.

Примеры осуществления способа

Пример 1

В упаренный раствор азотнокислого палладия при заданной температуре и перемешивании порционно добавляли рассчитанное количество трифторуксусной кислоты или ее ангидрида до прекращения образования коричневого осадка. Образовавшуюся суспензию охлаждали до комнатной температуры, осадок отфильтровывали, промывали трифторукусуной кислотой и подсушивали на фильтре в потоке сухого и чистого воздуха. Данные опытов приведены в таблице 1. Эксперименты №1-6; 13-14 проведены с использованием трифторуксусной кислоты, эксперименты №7-12; 15-16 - с использованием ангидрида трифторуксусной кислоты.

Осадок полимерного трифторацетата палладия перегружали в реактор и при заданной температуре и перемешивании добавляли необходимое количество ацетонитрила. Растворение осадка промежуточного соединения происходит практически мгновенно, и затем кристаллизуется целевое соединение в виде желтых кристаллов. Продукт отделяли фильтрованием и подсушивали на фильтре в потоке сухого и чистого воздуха, затем при пониженном или нормальном давлении в воздушной атмосфере при 20-25°C. Данные опытов приведены в таблице 2 (эксперименты 1-6).

Пример 2

Процесс проводили по примеру 1, но перекристаллизованный целевой продукт не отфильтровывали, а растворитель испаряли при заданной температуре. При этом повысился выход продукта, но увеличилась продолжительность процесса. Данные опытов приведены в таблице 2 (эксперименты 7-10).

Пояснения к таблицам:

I - температура упаривания исходного раствора азотнокислого палладия (°C);

II - температура раствора азотнокислого палладия при взаимодействии с трифторуксусной кислотой или ее ангидридом (°C);

III - количество добавляемой трифторуксусной кислоты (%) от мольного количества палладия в исходном растворе азотнокислого палладия;

IV - количество добавляемого ангидрида трифторуксусной кислоты (%) от мольного количества палладия в исходном растворе азотнокислого палладия;

V - выход промежуточного catena-[Pd(CF3COO)2]n (%) от количества палладия в исходном растворе азотнокислого палладия;

VI - данные рентгенофазового анализа промежуточного продукта. Качество получаемого вещества определяли методом рентгенофазового анализа при сравнении рентгенограмм с эталонной в порошковой базе ICDD;

VII - температура перевода промежуточного catena-[Pd(CF3COO)2]n в целевой [Pd3(CF3COO)6] (°C);

VIII - массовое соотношение catena-[Pd(CF3COO)2]n:CH3CN;

IX - температура испарения ацетонитрила после образования целевого соединения (°C);

X - выход целевого [Pd3(CF3COO)6] (%) от количества палладия в промежуточном catena-[Pd(CF3COO)2]n;

XI - данные рентгенофазового анализа целевого продукта. Качество получаемою вещества определяли методом рентгенофазового анализа при сравнении рентгенограмм с эталонной (неопубликована) и растворением в ацетонитриле (если имеется нерастворимый осадок определялось его массовое содержание).

Как показано в приведенных примерах, использование заявляемого способа позволяет усовершенствовать способ получения трифторацетата палладия (II) в кристаллическом монофазовом состоянии [Pd3(CF3COO)6], повысить стабильность синтеза, а также достичь высокого выхода целевого соединения.

Таблица 1 Способ получения трифторацетата палладия (получение catena-[Pd(CF3COO)2]n) I II III IV V VI 1 30 60 600 - 78 catena-[Pd(CF3COO)2]n без примесей 2 90 80 700 - 76 catena-[Pd(CF3COO)2]n с примесью PdO 3 50 20 700 - 72 catena-[Pd(CF3COO)2]n без примесей 4 60 90 800 - 77 то же 5 80 30 500 - 70 то же 6 75 50 900 - 77 то же 7 80 50 - 300 76 то же 8 80 70 - 500 87 то же 9 80 20 - 400 83 то же 10 75 90 - 400 88 то же 11 30 40 - 350 85 то же 12 90 50 - 450 88 catena-[Pd(CF3COO)2]n с примесью PdO 13 75 70 700 - 76 catena-[Pd(CF3COO)2]n без примесей 14 80 80 700 - 78 то же 15 80 40 - 400 88 то же 16 80 50 - 420 88 то же

Таблица 2 Способ получения трифторацетата палладия (получение [Pd3(CF3COO)6]) VII VIM* IX X XI 1 5 1:1 - 92 [Pd3(CF3COO)6] без примесей 2 40 1:0.5 - 90 то же 3 30 1:0.25 - 92 [Pd3(CF3COO)6] с примесью catena-[Pd(CF3COO)2]n 4 20 1:3 - 85 [Pd3(CF3COO)6 без примесей 5 15 1:2 - 92 то же 6 20 1:1 - 90 то же 7 10 1:0.7 5 количественный переход то же 8 25 1:1 40 то же то же, но вещество хуже окристаллизовано; нерастворимый остаток - менее 0.5% 9 20 1:1.5 30 то же [Pd3(CF3COO)6 без примесей 10 20 1:1 20 то же то же * Был использован ацетонитрил марки “ч.д.а.”, который для дополнительной очистки был перегнан дважды в вакууме: над сульфатом натрия и P2O5, и повторно без реагентов.

Похожие патенты RU2529036C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ КАРБОКСИЛАТОВ ПАЛЛАДИЯ 2013
  • Мулагалеев Руслан Фаатович
  • Лешок Дарья Юрьевна
  • Кирик Сергей Дмитриевич
RU2536684C1
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА ПАЛЛАДИЯ 2007
  • Мулагалеев Руслан Фаатович
  • Кирик Сергей Дмитриевич
  • Соловьев Леонид Александрович
RU2333196C1
СПОСОБ ПОЛУЧЕНИЯ ДИЗАМЕЩЕННЫХ ДИНИТРИТНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ 2013
  • Мулагалеев Руслан Фаатович
  • Кирик Сергей Дмитриевич
RU2535705C1
СПОСОБ ПОЛУЧЕНИЯ ПРОПИОНАТА ПАЛЛАДИЯ 2009
  • Мулагалеев Руслан Фаатович
  • Кирик Сергей Дмитриевич
RU2425023C1
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА ПАЛЛАДИЯ 2007
  • Мулагалеев Руслан Фаатович
  • Кирик Сергей Дмитриевич
  • Соловьев Леонид Александрович
RU2333195C1
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА ПАЛЛАДИЯ 2007
  • Храненко Светлана Петровна
  • Коренев Сергей Васильевич
  • Иванова Лидия Владимировна
  • Востриков Владимир Александрович
  • Прудникова Наталья Григорьевна
RU2344117C1
СПОСОБ ПОЛУЧЕНИЯ НИТРОЗИЛЬНО-ХЛОРИДНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ 2014
  • Мулагалеев Руслан Фаатович
RU2579593C1
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОЯДЕРНЫХ АЦЕТАТОВ ПАЛЛАДИЯ С ЦВЕТНЫМИ МЕТАЛЛАМИ 2010
  • Мулагалеев Руслан Фаатович
  • Кирик Сергей Дмитриевич
RU2458039C1
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА ПАЛЛАДИЯ 2005
  • Мулагалеев Руслан Фаатович
  • Блохин Александр Иванович
  • Кирик Сергей Дмитриевич
  • Иванова Лидия Владимировна
  • Востриков Владимир Александрович
RU2288214C1
СПОСОБ ИЗВЛЕЧЕНИЯ ПАЛЛАДИЯ ИЗ ВЫСОКОАКТИВНОГО РАФИНАТА ЭКСТРАКЦИОННОГО ЦИКЛА ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА (ВАРИАНТЫ) 2017
  • Меркулов Игорь Александрович
  • Тихомиров Денис Валерьевич
  • Жабин Андрей Юрьевич
  • Апальков Глеб Алексеевич
  • Смирнов Сергей Иванович
  • Дьяченко Антон Сергеевич
  • Малышева Виктория Андреевна
RU2639884C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ТРИФТОРАЦЕТАТА ПАЛЛАДИЯ

Изобретение относится к способу получения трифторацетата палладия. Способ включает растворение металлического палладия в концентрированной азотной кислоте, упаривание полученного раствора. При этом раствор азотнокислого палладия упаривают при температуре (40-80)°C до начала кристаллизации нитрата палладия. В образовавшийся раствор при температуре (30-80)°C добавляют трифторуксусную кислоту в количестве (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия или ангидрид трифторуксусной кислоты в количестве (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия до прекращения кристаллизации полимерного трифторацетата палладия. Проводят фильтрацию образовавшегося соединения и его перевод в целевой продукт добавлением ацетонитрила при температуре (10-30)°C при массовом соотношении соединение : ацетонитрил - 1:(0.5-2). Изобретение позволяет усовершенствовать способ получения трифторацетата палладия (II) в кристаллическом монофазовом состоянии [Pd3(CF3COO)6], повысить стабильность синтеза, а так же достичь высокого выхода целевого соединения. 1 з.п. ф-лы, 2 табл., 2 пр.

Формула изобретения RU 2 529 036 C1

1. Способ получения трифторацетата палладия путем растворения металлического палладия в концентрированной азотной кислоте, упаривания полученного раствора, отличающийся тем, что раствор азотнокислого палладия упаривают при температуре (40-80)°C до начала кристаллизации нитрата палладия, в образовавшийся раствор при температуре (30-80)°C добавляют трифторуксусную кислоту в количестве (600-800) % от мольного количества палладия в исходном растворе азотнокислого палладия или ангидрид трифторуксусной кислоты в количестве (350-450) % от мольного количества палладия в исходном растворе азотнокислого палладия до прекращения кристаллизации полимерного трифторацетата палладия, фильтрации образовавшегося соединения и его перевода в целевой продукт добавлением ацетонитрила при температуре (10-30)°C при массовом соотношении соединение : ацетонитрил - 1:(0.5-2).

2. Способ по п.1, отличающийся тем, что после перевода полимерного трифторацетата палладия в целевой продукт ацетонитрил испаряют при температуре (10-30)°C.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529036C1

СПОСОБ ПОЛУЧЕНИЯ ПРОПИОНАТА ПАЛЛАДИЯ 2010
  • Мулагалеев Руслан Фаатович
  • Кирик Сергей Дмитриевич
RU2430926C1
STEPHENSON T.A
et al, 667
Carboxylates of Palladium, Platinum, and Rhodium, and their Adducts, J
Chem
Soc., 1965, p
Лотерейный прибор с приспособлением для контроля вышедших номеров 1925
  • Степанычева Н.Н.
SU3632A1
ГЭРБЭЛЭУ Н.В
и др., Исследование летучих карбоксилатов некоторых металлов масс-спектральным методом, Теоретическая и экспериментальная химия, 1986, т
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Ледорезный аппарат 1921
  • Раздай-Бедин П.П.
SU322A1
US 4465635 A, 14.08.1984

RU 2 529 036 C1

Авторы

Мулагалеев Руслан Фаатович

Даты

2014-09-27Публикация

2013-05-24Подача