СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ СОЕДИНЕНИЙ Российский патент 2014 года по МПК C30B15/34 

Описание патента на изобретение RU2534144C1

Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений по способу Степанова, например лейкосапфира, рубина, алюмоиттриевого граната и других тугоплавких соединений, которые могут быть использованы в приборостроении, машиностроении, термометрии, химической промышленности.

Известно устройство и способ получения профилированных кристаллов в виде труб из расплава на торце формообразователя (А.с. СССР №1592414, МПК C30B 15/34, заявл. 26.11.86, опубл. 15.09.90, бюл. №34), в котором используют формообразователь с кольцевым питающим капилляром и одним вертикальным каналом, выполненным в верхней части формообразователя. К недостаткам такого устройства следует отнести невозможность на практике, при малом диаметре вертикального канала, получения кристаллов с продольными каналами длиной более 40 мм, поскольку в процессе выращивания внутренний мениск продольного канала или схлопывается, или разрывается.

Наиболее близким техническим решением, взятым за прототип, является устройство, позволяющее реализовать способ получения профилированных кристаллов (Патент Украины №36892, МПК C30B 15/34, заявл. 22.02.2000, опубл. 16.04.2001, бюл. №3, 2001), в котором получение кристаллов с продольными каналами малого диаметра осуществляют с использованием формообразователя, состоящего из внешнего и внутреннего элементов с капиллярным зазором между ними, причем внутренний элемент (фиксатор) изготовлен из несмачиваемого расплавом материала и вставлен в вертикальный канал малого диаметра, выполненный в верхней части внутреннего элемента формообразователя. Образование продольных каналов малого диаметра в выращиваемом кристалле, как заявляют авторы, осуществляется за счет того, что расплав не смачивает фиксатор (фиг.2 в указанном патенте). Однако данное изобретение не позволяет устойчиво получать кристаллы с продольными каналами, так как предлагаемый авторами в качестве несмачиваемого материала вольфрам, как показала практика, при выращивании кристаллов смачивается расплавом и в силу этого процесс выращивания становится трудновоспроизводимым и даже невозможным.

Задача и обеспечиваемый изобретением технический результат - стабильность процесса выращивания профилированных кристаллов длиной до 500 мм и более с продольными каналами малого диаметра.

Поставленная задача и указанный технический результат достигаются тем, что в способе выращивания профилированных кристаллов тугоплавких соединений с продольными каналами малого диаметра, включающем формирование столбика расплава между затравкой и верхним торцом формообразователя, снабженным вертикальным кольцевым питающим капилляром постоянного сечения и, по крайней мере, одним вертикальным каналом малого диаметра, выполненным в верхней части формообразователя, согласно изобретению в процессе выращивания кристалла расстояние от верхнего торца формообразователя до уровня расплава Hэфф поддерживают не более 0,8h, а питающий капилляр выполняют длиной L, определяемой из соотношения 2,5h>L>h, где h - высота подъема расплава в капилляре.

Высоту подъема расплава в капилляре можно определить по известной формуле Жюрена h=2σ·cos Ө/ρgr, где

σ - коэффициент поверхностного натяжения жидкости,

Ө - угол смачивания расплавом материала формообразователя,

ρ - плотность расплава,

g - ускорение силы тяжести,

r - радиус или ширина капилляра.

Схлопывание продольного отверстия в растущем кристалле происходит вследствие того, что сила, воздействующая на расплав, обусловленная смачиванием расплавом материала формообразования, направлена в сторону оси продольного отверстия в кристалле, и любое дополнительное воздействие на расплав, например вибрация или изменение температурного режима, приводит к схлопыванию отверстия в кристалле. Чем меньше диаметр отверстия в кристалле, тем больше сила «схлопывания» и тем труднее вырастить такой кристалл.

Поставленная авторами задача решалась путем уменьшения силы «схлопывания» за счет увеличения сопротивления прохождению расплава в питающем капилляре, конкретно, за счет увеличения его длины.

Заявляемое изобретение поясняется чертежом, на котором схематично изображен в разрезе формообразователь для выращивания профилированных кристаллов с продольными капиллярными каналами малого диаметра, а также расплав и растущий кристалл.

Формообразователь для выращивания профилированных кристаллов, с помощью которого реализуется заявляемый способ, выполнен из внешнего 1 и внутреннего 2 элементов с кольцевым питающим капилляром 3 и вертикальным каналом 4 малого диаметра, выполненным в верхней части формообразователя. Рост кристалла 6 осуществляют на затравку 7 из столбика расплава 5 на верхнем торце формообразователя.

Заявляемый способ осуществляется следующим образом.

Камеру, в которой проводят выращивание кристалла, наполняют инертным газом, затем расплавляют загрузку в тигле и погружают нижний торец формообразователя в расплав. Расстояние от уровня расплава до верхнего торца формообразователя составляет Нэфф. Расплав за счет капиллярных сил поднимется по питающему капилляру 3 к верхнему торцу формообразователя. Далее опускают затравку 7 в виде трубки до касания верхнего торца формообразователя, производят затравление и включают перемещение затравки вверх. Из столбика расплава 5 начинается рост стержня 6, диаметр которого практически равен диаметру верхнего торца формообразователя, с продольным капиллярным каналом, соответствующим вертикальному каналу 4 малого диаметра, выполненному в верхней части формообразователя.

Поддерживая в предлагаемом диапазоне соотношение между Нэфф, длиной питающего капилляра L и высотой подъема расплава в капилляре h, тем самым обеспечиваем минимальную величину силы «схлопывания» и практически исключаем схлопывание продольных каналов диаметром от 0,5 мм до 1,2 мм.

Когда величина Нэфф составляет более 0,8h, то, как показывает практика, расплав либо может не подняться к верхнему торцу формообразователя из-за высокого сопротивления питающего капилляра прохождению по нему расплава, обусловленного повышенной длиной питающего капилляра, либо время его прохождения до верхнего торца формообразователя будет недопустимо долгим - более 30 минут.

Если длина питающего капилляра L меньше h, то сила «схлопывания» превалирует над силой сопротивления прохождению расплава в питающем капилляре, возникающей из-за вязкости расплава, увеличивается вероятность схлопывания в кристалле продольного канала малого диаметра при вибрациях или изменениях температурного режима.

Если длина питающего капилляра L составляет более 2,5h, то расплав либо не доходит до рабочего торца формообразователя из-за большого сопротивления прохождению расплава в питающем капилляре, либо время его прохождения до верхнего торца формообразователя будет недопустимо долгим - более 40 минут.

В результате использования предлагаемого способа практически исключается «схлопывание» продольных каналов и имеется возможность выращивания кристаллов достаточно большой длины (500 мм и более) с продольными каналами диаметром от 0,5 мм до 1,5 мм.

Пример конкретной реализации изобретения.

Эксперименты проводили на установке для выращивания кристаллов типа СЗВН-20.800/22-И1 с графитовой тепловой зоной. Формообразователь и тигель изготовили из молибдена. Диаметр тигля составлял 70 мм, глубина - 65 мм. Формообразователь имел верхний торец диаметром 12 мм, в котором выполнено по оси вертикальное отверстие диаметром 0,8 мм, т.е. формообразователь предназначен для выращивания стержня диаметром 12 мм с продольным каналом диаметром 0,8 мм. Высота формообразователя составляла 60 мм. При погружении формообразователя на 30 мм величина Нэфф равнялась 30 мм. Ширина питающего капилляра равнялась 1 мм. Высота подъема расплава h в таком капилляре составляет 43 мм, т.е. Нэфф=30 мм <0,8h=34,4 мм. Питающий капилляр L выполнен длиной 1,5h=64 мм. Загрузка тигля составляла 300 г оксида алюминия (бой кристаллов, полученных методом Вернейля). Выращивание кристаллов осуществляли со скоростью 0,8-1,2 мм/мин в среде инертного газа аргона с избыточным давлением 0,05 кгс/см2.

В результате выращивали стержни диаметром 12 мм и длиной до 500 мм с продольными каналами диаметром 0,8 мм.

Было проведено: 1 серия экспериментов с формообразователем-прототипом; 4 серии экспериментов с формообразователями по предлагаемому изобретению, всего 30 циклов выращивания.

Во время первой серии, состоящей из 5 циклов выращивания, проводилось пробное выращивание кристаллов по методике прототипа. В отверстии 4 внутреннего элемента формообразователя на плотной посадке фиксировался вольфрамовый стержень диаметром 0,8 мм, который выступал над верхним торцом формообразователя на 0,5-3 мм (в различных экспериментах). Все попытки получить стержень с продольным отверстием закончились неудачей из-за чрезвычайной неустойчивости процесса выращивания. В результате получали только сплошной стержень.

Во время второй серии из 5 циклов Нэфф=0,9 h=38,7 мм, где h=43 мм. В этом случае расплав во всех 5-ти экспериментах не поднялся к верхнему торцу формообразователя (по-видимому, из-за высокого сопротивления питающего капилляра прохождению по нему расплава, возникающего вследствие вязкости расплава). Выращивать кристалл было невозможно.

Во время третьей и четвертой серий длина питающего капилляра 1) L=40 мм <h=43 мм и 2) L=115 мм >2,5 h=107,5 мм. Было проведено по 5 циклов выращивания в указанных вариантах. В первом случае практически всегда происходило «схлопывание» продольного канала малого диаметра. Во втором случае расплав не поднимался до рабочего торца формообразователя.

Во время пятой серии из 10 циклов поддерживались заявляемые соотношения Нэфф=30 мм <0,8 h=34,4 мм и 2,5h=107,5 мм >L=100 мм >h=43 мм. Это позволило устойчиво выращивать стержни диаметром 12 мм с внутренним каналом диаметром 0,8 мм длиной до 500 мм.

При соблюдении заявляемых соотношений получены также стержни с продольным отверстием диаметром 1,2 мм.

Таким образом, заявляемое изобретение позволяет стабильно получать кристаллы длиной до 500 мм и более с продольными каналами малого диаметра.

Заявляемое изобретение найдет применение в приборостроении, часовой промышленности, термометрии, химической промышленности.

Похожие патенты RU2534144C1

название год авторы номер документа
УСТРОЙСТВО И СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ СОЕДИНЕНИЙ 2012
  • Выбыванец Валерий Иванович
  • Конарев Сергей Анатольевич
  • Кравецкий Дмитрий Яковлевич
RU2507320C2
Способ выращивания профилированных кристаллов сложных оксидов 1989
  • Курлов Владимир Николаевич
  • Редькин Борис Сергеевич
SU1691433A1
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИХ ПОЛЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1986
  • Василенко А.Ю.
  • Косилов А.Т.
  • Кандыбин В.И.
RU2031984C1
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ТРУБ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2013
  • Письменный Виктор Александрович
  • Сандуленко Александр Витальевич
  • Крутова Лариса Ивановна
  • Ветров Василий Николаевич
RU2531823C1
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ САПФИРОВЫХ ПОЛУСФЕРИЧЕСКИХ ЗАГОТОВОК 1994
  • Курлов В.Н.
  • Эпельбаум Б.М.
RU2078154C1
СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ 1994
  • Курлов В.Н.
RU2077616C1
СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ СОЕДИНЕНИЙ 1999
  • Белоусенко А.П.
  • Колесов В.С.
  • Королев В.И.
  • Кравецкий Д.Я.
RU2164267C1
СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ 1983
  • Андреев Е.П.
  • Пищик В.В.
  • Литвинов Л.А.
SU1131259A3
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ МОНОКРИСТАЛЛОВ 1988
  • Пищик В.В.
  • Литвинов Л.А.
  • Пузиков В.М.
RU1591537C
Способ получения торцевых поверхностей с кривизной на монокристаллах сапфира 2020
  • Шикунова Ирина Алексеевна
  • Курлов Владимир Николаевич
  • Долганова Ирина Николаевна
  • Зайцев Кирилл Игоревич
  • Катыба Глеб Михайлович
RU2743354C1

Реферат патента 2014 года СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ СОЕДИНЕНИЙ

Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова, например лейкосапфира, рубина, алюмоиттриевого граната, которые могут быть использованы в приборостроении, машиностроении, термометрии, химической промышленности. Способ включает формирование столбика расплава 5 между затравкой 7 и верхним торцом формообразователя, который снабжен вертикальным кольцевым питающим капилляром 3 постоянного сечения и, по крайней мере, одним вертикальным каналом 4 малого диаметра, выполненным в верхней части формообразователя. В процессе выращивания кристалла 6 расстояние от верхнего торца формообразователя до уровня расплава Нэфф поддерживают не более 0,8h, а питающий капилляр 3 выполняют длиной L, определяемой из соотношения 2,5h>L>h, где h - высота подъема расплава в капилляре. Технический результат - стабильность процесса выращивания профилированных кристаллов длиной до 500 мм и более с продольными каналами малого диаметра. 1 ил.

Формула изобретения RU 2 534 144 C1

Способ выращивания профилированных кристаллов тугоплавких соединений с продольными каналами малого диаметра, включающий формирование столбика расплава между затравкой и верхним торцом формообразователя, снабженного вертикальным кольцевым питающим капилляром постоянного сечения и, по крайней мере, одним вертикальным каналом малого диаметра, выполненным в верхней части формообразователя, отличающийся тем, что в процессе выращивания кристалла расстояние от верхнего торца формообразователя до уровня расплава Нэфф поддерживают не более 0,8h, а питающий капилляр выполняют длиной L, определяемой из соотношения 2,5h>L>h, где h - высота подъема расплава в капилляре.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534144C1

Способ приготовления огнеупорной футеровочной массы 1933
  • Синяков Б.П.
SU36892A1
Лаг 1935
  • Еремеев Б.Н.
SU47846A1
SU 1592414 A1, 15.09.1990
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИХ ПОЛЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1986
  • Василенко А.Ю.
  • Косилов А.Т.
  • Кандыбин В.И.
RU2031984C1

RU 2 534 144 C1

Авторы

Выбыванец Валерий Иванович

Конарев Сергей Анатольевич

Кравецкий Дмитрий Яковлевич

Остапенко Константин Александрович

Даты

2014-11-27Публикация

2013-06-27Подача