Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления Российский патент 2022 года по МПК B22F10/28 B33Y10/00 B23K26/342 B23K26/60 B22F3/105 

Описание патента на изобретение RU2767968C1

Изобретение относится к области машиностроения, а именно к способу изготовления деталей малоразмерных газотурбинных двигателей (МГТД), в частности, двигателей типов МГТД-20, МГТД-125 и МГТД-150, методом селективного лазерного сплавления и может быть использовано в авиадвигателестроении при производстве маршевого двигателя летательного аппарата.

Технология аддитивного производства для изготовления изделий авиационного назначения методом селективного лазерного сплавления (СЛС) осложнена необходимостью разработки таких режимов синтеза для авиационных сплавов, чтобы последующее синтезированное изделие обладало минимальной долей внутренних объемных дефектов, а также заданным качеством поверхности. Помимо разработки режима необходимо сконструировать и оптимизировать конструкцию изделия таким образом, чтобы обеспечить наибольшую эффективность его применения в силовых агрегатах летательных аппаратов и снизить их вес.

Известен способ изготовления компонента газотурбинного двигателя из металлического порошка, содержащий аддитивное изготовление компонента и его термическую обработку. Аддитивное изготовление компонента ведут в формовочной камере, в которую вводят науглероживающий газ. Термическую обработку полученного аддитивным изготовлением компонента ведут с обеспечением осаждения карбидов на границах его зерен (RU 2670827 С2, опубл. 25.10.2018 г. B22F 3/105).

К недостаткам вышеуказанного способа можно отнести использование науглероживающего газа, который приводит к осаждению карбидов на поверхности сплавляемых слоев, что может приводить к росту объемных дефектов, локализованных между слоями.

Известен способ получения изделий для высоких тепловых нагрузок для авиационных двигателей, который включает обеспечение первой области компонента первым металлическим материалом посредством генеративного лазерного процесса или создание первой области из первого металлического материала, затем создание второй области компонента из второго металлического материала. Способ дополнительно включает создание охлаждающего элемента на компоненте путем селективного лазерного спекания и/или селективной лазерной плавки посредством увеличения концентрации таких элементов, как медь и/или алюминий с высокой теплопроводностью и высоким коэффициентом линейного расширения в металлическом материале. (ЕР 2559787 А1, опубл. 20.02.2013 B23K 26/00).

К недостаткам вышеуказанного способа можно отнести невозможность промышленной реализации данного способа изготовления деталей ГТД на современных установках селективного лазерного сплавления.

Известен способ изготовления металлических изделий селективным лазерным спеканием, включающий первый этап, на котором порошковый материал засыпают в загрузочный бункер, закрывают герметичную камеру, откачивают воздух из герметичной камеры с помощью вакуумной системы, затем заполняют внутренний объем герметичной камеры инертным газом из блока подачи инертного газа до достижения заданного давления, включают систему циркуляции инертного газа, обеспечивают непрерывный обдув зоны сплавления порошкового материала и оптического оборудования лазерной системы через вентиляционные отверстия и производят нагрев основания с подложкой для формируемого изделия. После чего осуществляют второй этап, на котором подают порошковый материал из загрузочного бункера в среде инертного газа через шлюзовое устройство в дозатор, производят выгрузку и разравнивание заданного объема порошкового материала с помощью выравнивателя из дозатора на подложку, полученный слой облучают сфокусированным лазерным излучением в точках слоя, соответствующих поперечному сечению формируемого изделия по заданной программе в системе управления упомянутой установки, после завершения облучения опускают опору для поддержки формируемого изделия на величину толщины полученного слоя. Выравниватель перемещают в обратном направлении, затем операции второго этапа повторяют до полного формирования изделия. После чего осуществляют третий этап, на котором удаляют защитный газ из герметичной камеры, выравнивают давление в герметичной камере с атмосферным, открывают герметичную камеру и извлекают полученное изделие из камеры (RU 2717761 С1, опубл. 25.03.2020, B22F 3/105).

К недостаткам вышеуказанного способа можно отнести технологические трудности обеспечения равномерного слоя порошка при его нанесении с использованием вертикальной подачи, что ведет к увеличению количества объемных дефектов при синтезе изделия.

Наиболее близким аналогом заявленного изобретения является способ изготовления детали из хромсодержащего жаропрочного сплава на основе никеля, включающий послойное нанесение порошка хромсодержащего жаропрочного сплава на основе никеля на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали, горячее изостатическое прессование полученной детали в среде аргона и ее термическую обработку. Металлический порошок хромсодержащего жаропрочного сплава на основе никеля предварительно подвергают газодинамической сепарации с последующей дегазацией. Процесс сплавления слоев порошка лазерным лучом проводят в защитной атмосфере азота. Перед горячим изостатическим прессованием полученную деталь помещают в среду электрокорунда и стружки титана или титанового сплава без соприкосновения детали с упомянутой стружкой (RU 2623537, опубл. 27.06.2017 B23K 26/342).

Недостатком данного способа является отсутствие предварительной компьютерной обработки (топологической оптимизации) электронной 3D-модели детали газотурбинного двигателя, что не позволяет совершенствовать конструкцию детали, тем самым, снижая эффективность ее применения.

Технический результат заявленного изобретения заключается в разработке способа изготовления деталей малогабаритного газотурбинного двигателя с тягой до 150 кгс с повышенным показателем тяговооруженности за счет сокращения массы деталей посредством топологической оптимизации.

Заявленный технический результат достигается тем, что способ изготовления деталей малоразмерного газотурбинного двигателя селективным лазерным сплавлением включает в себя операции создания электронной 3D-модели детали при помощи системы твердотельного моделирования, проведения топологической оптимизации детали с учетом ее конструктивных особенностей и схемы нагружения, разделение оптимизированной 3D-модели детали на слои и экспортирование ее на оборудование, газодинамическую сепарацию и дегазацию порошка, послойное нанесение металлического порошка на подложку нагретую в течении 30-60 минут до 200°С и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере азота.

В варианте изготовления детали МГТД фронтовое устройство, корпус, сопло, направляющий аппарат, колесо турбины, корпус соплового аппарата дополнительно подвергают горячему изостатическому прессованию при давлении 100-200 МПа и температуре 1100-1200°С.

В варианте изготовления детали МГТД фронтовое устройство, корпус, сопло, направляющий аппарат, жаровая труба, камера сгорания, дно корпуса, корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышка устройства входа, крепление испарительных трубок дополнительно подвергают термической обработке.

В варианте изготовления деталей: корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышка устройства входа, крепление испарительных трубок - в процессе сплавления слоев порошка осуществляют нагрев подложки до 100°С.

В варианте изготовления процесс сплавления слоев порошка лазерным лучом проводят в защитной атмосфере аргона.

В варианте изготовления металлический порошок выполнен из сплава на основе никеля или кобальта, или алюминия.

Топологическая оптимизация с учетом конструктивных особенностей и схемы нагружения после моделирования электронной 3D-модели детали позволяет снизить массу деталей МГТД с сохранением требуемых прочностных характеристик, тем самым обеспечить снижение веса и повышение тяговооруженности МГТД.

Газодинамическая сепарация металлического порошка позволяет исключить наличие в нем тонкой (агломерирующей) фракции менее 10 мкм, препятствующей равномерному нанесению на подложку, а также дефектных пористых гранул, внутри которых содержится локальный объем инертного газа аргона. Применение таких гранул в процессе лазерного сплавления приводит к структурной неоднородности (пористости) сплавленных слоев, что отрицательно сказывается на механических свойствах изготавливаемой детали. В большей степени достичь однородности сплавленных слоев можно используя порошки небольшого фракционного состава менее 63 мкм.

Дегазация металлического порошка жаропрочного сплава на основе фракционного состава менее 63 мкм позволяет удалить с поверхности частиц порошка адсорбированный кислород, который является вредной газовой примесью, приводящей к снижению механических свойств изготавливаемой детали.

С целью получения детали большей геометрической точности и высокими механическими свойствами предпочтительно использовать металлический порошок фракционного состава менее 63 мкм с содержанием кислорода менее 0,01 масс. %.

Дегазацию проводят посредством вакуумирования камеры, в которую помещен порошок, с последующим нагревом до температуры до 300°С и выдержке при ней в течение 2-6 ч.

Селективное сплавление (сканирование) порошка лазерным лучом лучше проводить со скоростью от 0,6 до 3,2 м/сек и мощностью лазера 150-600 Вт. Сочетание указанных скорости и мощности обеспечивает стабильный процесс изготовления деталей за счет полного расплавления сплавляемого слоя металлических порошков.

На подложку предпочтительно наносить слой порошка от 20 до 50 мкм.

В процессе изготовления каждое сечение формируемой детали разбивается на отдельные фрагменты, которые формируются с помощью лазерного сплавления металлического порошка, а при сплавлении следующего слоя детали шаг прохождения лазерного луча сдвигается. Это позволяет понизить термические напряжения, возникающие в процессе лазерного сплавления, за счет локализации внутренних напряжений сплавленного металла в небольшом участке и снижения их до минимума, что обеспечивает стабильность технологического процесса и изготовление детали заданной геометрической формы с высокой точностью.

Процесс селективного лазерного сплавления деталей из никелевого и кобальтового сплавов проводят с подогревом подложки до 200°С, для деталей из алюминиевого сплава - до 100°С. Эта операция направлена на снижение остаточных термических напряжений в деталях МГТД.

Проведение процесса горячего изостатического прессования детали, изготовленной селективным лазерным сплавлением металлического порошка жаропрочного сплава на основе никеля или кобальта, осуществляется при давлении 100-200 МПа и температуре 1100-1200°С, что обеспечивает эффективное снижение пористости синтезированного материала. Проведение процесса горячего изостатического прессования в среде электрокорунда и стружки титана или титанового сплава (стружка-газопоглотитель) обеспечивает уменьшение толщины окисленного слоя за счет снижения электрокорундом интенсивности циркуляции прессующей среды аргона у поверхности обрабатываемых деталей и поглощения из нее примесей кислорода стружкой-газопоглотителем, содержащей титан, имеющий высокое химическое сродство с кислородом. Во избежание высокотемпературного взаимодействия материала детали и стружки титана или титанового сплава во время горячего изостатического прессования деталь и стружка не должны соприкасаться, что достигается наличием в камере внутренней полости с полыми стенками, в которых находится смесь электрокорунда и стружки.

Заявленный способ осуществляется следующим образом. На первом этапе создается электронная 3D-модель при помощи системы твердотельного моделирования. Затем созданная электронная 3D-модель подвергается топологической оптимизации с учетом конструктивных особенностей и схемы нагружения в специальном программном обеспечении. После этого обработанная 3D-модель разделяется на слои и загружается в оборудование для трехмерной печати (3D-принтер). На втором этапе проводят предварительный подогрев подложки от 100 до 200°С в течении 30-60 минут, затем порошковый материал, толщина которого не превышает 50 мкм, распределяется тонким слоем на рабочей поверхности подложки. Лазер согласно заданным параметрам селективно осуществляет расплавление порошка в атмосфере азота или аргона для формирования первого слоя детали. После лазерного сплавления первого слоя металлического порошка подложка опускается на определенный уровень, наносится новый слой порошкового материала, и процесс многократно повторяется до завершения изготовления детали. При необходимости на третьем этапе проводится горячее изостатическое прессование и термическая обработка детали.

Детали МГТД, выполненные с применением заявленного способа, а также сплав, указаны в таблице №1.

По предложенному способу и прототипу была изготовлена камера сгорания двигателя МГТД-20. Масса деталей составила для предложенного способа - 330 г, для прототипа - 348 г. Эффективное снижение массы составило 5,2%.

По предложенному способу и прототипу был изготовлен диффузор двигателя МГТД-20. Масса деталей составила для предложенного способа - 135 г, для прототипа - 187 г. Эффективное снижение массы составило 27,8%.

По предложенному способу и прототипу был изготовлен корпус соплового аппарата МГТД-125/150. Масса деталей составила для предложенного способа - 803 г, для прототипа - 951 г. Эффективное снижение массы составило 15,6%.

Похожие патенты RU2767968C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СПЛАВЛЕНИЕМ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2015
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Евгенов Александр Геннадьевич
  • Рогалев Алексей Михайлович
  • Василенко Светлана Александровна
  • Ходырев Никита Алексеевич
  • Сухов Дмитрий Игоревич
RU2623537C2
Способ изготовления заготовок послойным лазерным сплавлением металлических порошков сплавов на основе титана 2022
  • Неруш Святослав Васильевич
  • Рогалев Алексей Михайлович
  • Сухов Дмитрий Игоревич
  • Куркин Сергей Эдуардович
  • Панин Павел Васильевич
  • Рик Артур Алексеевич
RU2790493C1
Способ получения заготовок деталей и сборочных единиц индустриальных двигателей методом селективного лазерного сплавления металлического порошка 2022
  • Смелов Виталий Геннадиевич
  • Хаймович Александр Исаакович
  • Агаповичев Антон Васильевич
  • Петрухин Анатолий Геннадьевич
  • Чупин Павел Владимирович
  • Щедрин Евгений Юрьевич
RU2811330C1
Способ аддитивного формирования изделия с комбинированной структурой из жаропрочного никелевого сплава с высокотемпературным подогревом 2023
  • Попович Анатолий Анатольевич
  • Борисов Евгений Владиславович
  • Полозов Игорь Анатольевич
  • Стариков Кирилл Андреевич
  • Соколова Виктория Владиславовна
  • Новиков Павел Александрович
RU2821638C1
Пусковой факельный воспламенитель камеры сгорания малоразмерных газотурбинных двигателей 2024
  • Миронов Николай Сергеевич
  • Цапенков Константин Дмитриевич
  • Кузнецов Алексей Юрьевич
  • Попов Денис Русланович
  • Искворин Даниил Сергеевич
  • Надюк Анастасия Дмитриевна
  • Зубрилин Иван Александрович
  • Ястребов Всеволод Владимирович
RU2819261C1
Способ получения металлокерамического композиционного материала методом селективного лазерного сплавления 2022
  • Неруш Святослав Васильевич
  • Рогалев Алексей Михайлович
  • Сухов Дмитрий Игоревич
  • Богачев Игорь Александрович
  • Мазалов Павел Борисович
  • Курбаткина Елена Игоревна
  • Шошев Федор Львович
RU2801975C1
Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку 2018
  • Смелов Виталий Геннадиевич
  • Сотов Антон Владимирович
  • Агаповичев Антон Васильевич
  • Кяримов Рустам Равильевич
RU2674685C1
Малоразмерная газотурбинная установка 2024
  • Смелов Виталий Геннадьевич
  • Ткаченко Андрей Юрьевич
  • Шиманов Артем Андреевич
  • Виноградов Александр Сергеевич
  • Филинов Евгений Павлович
  • Батурин Олег Витальевич
  • Зубрилин Иван Александрович
RU2819326C1
Медьсодержащий титановый сплав и способ его получения 2023
  • Герасимов Евгений Витальевич
  • Щелканов Анатолий Николаевич
  • Гордеев Юрий Иванович
  • Зеленкова Елена Геннадьевна
  • Ясинский Виталий Брониславович
  • Зеер Галина Михайловна
RU2820186C1
Способ серийного производства изделий из нескольких порошковых материалов методом прямого лазерного выращивания 2023
  • Финогеев Даниил Юрьевич
RU2812448C1

Реферат патента 2022 года Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной 3D-модели детали при помощи системы твердотельного моделирования, газодинамическую сепарацию металлического порошка из жаропрочного сплава с последующей его дегазацией, послойное нанесение металлического порошка на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере. При этом осуществляют топологическую оптимизацию электронной 3D-модели детали с учетом конструктивных особенностей детали и схемы ее нагружения. Нагрев подложки осуществляют в течение 30-60 мин. При использовании никелевого или кобальтового сплава ее нагревают до 200°С, при использовании алюминиевого сплава – до 100°С, а сплавление осуществляют в среде азота или аргона. Обеспечивается сокращение массы деталей, повышение их тяговооруженности МГТД. 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 767 968 C1

1. Способ изготовления деталей малоразмерного газотурбинного двигателя из жаропрочного сплава в виде никелевого, кобальтового или алюминиевого сплава, включающий создание электронной 3D-модели детали при помощи системы твердотельного моделирования, газодинамическую сепарацию металлического порошка из жаропрочного сплава с последующей его дегазацией, послойное нанесение металлического порошка на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере, отличающийся тем, что осуществляют топологическую оптимизацию электронной 3D-модели детали с учетом конструктивных особенностей детали и схемы ее нагружения, причем осуществляют нагрев подложки в течение 30-60 мин, при этом при использовании никелевого или кобальтового сплава ее нагревают до 200°С, при использовании алюминиевого сплава – до 100°С, а сплавление осуществляют в среде азота или аргона.

2. Способ по п. 1, отличающийся тем, что в качестве деталей малоразмерного газотурбинного двигателя изготавливают: фронтовое устройство, корпус, сопло, направляющий аппарат, колесо турбины, корпус соплового аппарата, которые дополнительно подвергают горячему изостатическому прессованию при давлении 100-200 МПа и температуре 1100-1200°С.

3. Способ по п. 1, отличающийся тем, что в качестве деталей малоразмерного газотурбинного двигателя изготавливают: фронтовое устройство, корпус, сопло, направляющий аппарат, жаровую трубу, камеру сгорания, дно корпуса, корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышку устройства входа, деталь крепления испарительных трубок, которые дополнительно подвергают термической обработке.

4. Способ по п. 3, отличающийся тем, что в качестве деталей малоразмерного газотурбинного двигателя изготавливают из алюминиевого сплава: корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышку устройства входа, деталь крепления испарительных трубок, при этом нагрев подложки осуществляют до 100°С.

Документы, цитированные в отчете о поиске Патент 2022 года RU2767968C1

СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СПЛАВЛЕНИЕМ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2015
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Евгенов Александр Геннадьевич
  • Рогалев Алексей Михайлович
  • Василенко Светлана Александровна
  • Ходырев Никита Алексеевич
  • Сухов Дмитрий Игоревич
RU2623537C2
Бортовые кили для парусных плоскодонных судов 1923
  • Рыгельски З.К.
SU751A1
Сотов А.В
и др
"Аддитивные технологии: настоящее и будущее": материалы IV международной конференции, г
Москва, ФГУП "ВИАМ"
- М.: ВИАМ, 2018, с.122-127
Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку 2018
  • Смелов Виталий Геннадиевич
  • Сотов Антон Владимирович
  • Агаповичев Антон Васильевич
  • Кяримов Рустам Равильевич
RU2674685C1
US 10675687 B2,

RU 2 767 968 C1

Авторы

Каблов Евгений Николаевич

Оспенникова Ольга Геннадиевна

Антипов Владислав Валерьевич

Бакрадзе Михаил Михайлович

Неруш Святослав Васильевич

Мазалов Павел Борисович

Сухов Дмитрий Игоревич

Ходырев Никита Алексеевич

Тарасов Сергей Александрович

Пашков Александр Игоревич

Асланян Гарегин Григорович

Шакиров Артем Ренатович

Тарасов Георгий Георгиевич

Мурысин Денис Александрович

Титов Семен Сергеевич

Даты

2022-03-22Публикация

2021-05-19Подача