СПОСОБ ПОЛУЧЕНИЯ МИКРОХРОМАТОГРАФИЧЕСКИХ КОЛОНОК НА ПЛОСКИХ ПЛАСТИНАХ Российский патент 2015 года по МПК G01N30/56 

Описание патента на изобретение RU2540231C1

Изобретение относится к газовой хроматографии и может быть использовано для экспресс-анализа сложных смесей веществ природного и техногенного происхождения в различных отраслях промышленности: химической, нефтяной, газовой, металлургии, медицине, экологии и др.

Известны различные способы получения микрохроматографических колонок, в которых слой сорбента на внутренней поверхности колонок формируют суспензионным, химическим или механическим методами (см.: Тесаржик К., Комарек К. Капиллярные колонки в газовой хроматографии. - М.: Мир, 1987. С.76-108, см. также: Березкин В.Г. // Успехи химии, 1996. Т.65. №11. С.991-1011).

Известны также способы получения микрохроматографических колонок на кремниевых пластинах с использованием современных микроэлектронных и микромеханических МЭМС-технологий, при которых каналы для микрохроматографической колонки на кремниевой пластине получают методами фотолитографии и химического травления с последующей герметизацией каналов путем электростатического (анодного) сращивания со стеклом марки Пирекс (см.: Terry S.C., Jerman G.H., Angell J.B. A gas chromatographic air analyzer fabricated on a silicon wafer //Electron Devices, IEEE Transactions on, 1979. V.26. P.p.1880-1886, см. также: Козин С., Федулов А., Пауткин В., Баринов И. Микроэлектронные датчики физических величин на основе МЭМС-технологий// Компоненты и технологии, 2010. №1. С.24-27).

Однако известные способы получения микрохроматографических колонок на плоских кремниевых пластинах с использованием МЭМС-технологий сложны в изготовлении и не всегда обеспечивают достаточную воспроизводимость основных хроматографических характеристик.

Наряду с МЭМС-технологиями в последнее время в аналитическом приборостроении для химического анализа широко используют различные микрофлюидные устройства, изготавливаемые на пластинах методом лазерной абляции. В качестве материала для изготовления микрофлюидных устройств используют не только кремниевые пластины, но и различные металлы, стекло и полимеры (см.: Микрофлюидные системы для химического анализа / Под редакцией акад. Золотова Ю.А. и д.т.н. Курочкина В.Е. - М.: Физматлит, 2011. 528 с.).

Однако метод лазерной абляции по имеющимся литературным данным не использовали для получения микрохроматографических колонок.

Наиболее близким к изобретению по совокупности существенных признаков является способ получения микрохроматографических колонок на плоской кремниевой пластине, при котором каналы на кремниевой пластине для микрохроматографической колонки получают с использованием МЭМС-технологий с последующей герметизацией каналов путем электростатического (анодного) сращивания со стеклом Пирекс (см.: Jerman G.H., Terry S. C. A miniature gas chromatograph for atmospheric monitoring // Environment International, 1981. V.5. P.p.77-83).

Недостатками известного способа получения микрохроматографических колонок на плоских кремниевых пластинах с использованием МЭМС-технологий являются сложность изготовления и использование специального оборудования, требующего высококвалифицированного обслуживания.

Задачей изобретения является расширение ассортимента материалов для получения микрохроматографических колонок на плоских пластинах.

Эта задача решается за счет того, что в способе получения микрохроматографических колонок на плоских пластинах, заключающемся в создании каналов на поверхности пластин, при котором на поверхности пластины получают каналы для микрохроматографической колонки с последующей их герметизацией и заполнением соответствующим сорбентом для хроматографического анализа, согласно изобретению каналы для микрохроматографической колонки на плоской пластине создают методом лазерной абляции, а плоскую пластину выполняют из различных металлов, кремния, стекла или полимеров. Кроме того, герметизацию микрохроматографической колонки проводят стеклянной пластиной через прокладку из полимерной пленки под вакуумом при воздействии температуры.

При решении поставленной задачи создается технический результат, заключающийся в получении микрохроматографических колонок на плоских пластинах из различных материалов, включая, например, кремний, титан и фторопласт, что расширяет область применения микрохроматографических колонок для решения конкретных аналитических задач.

На чертеже представлен общий вид микрохроматографических колонок на плоской пластине, состоящих из плоской пластины 1 с изготовленными каналами 2 в виде спирали, герметизирующей стеклянной пластины 3, вклеенных капилляров 4 с диаметром 200 мкм для входа и выхода колонки. Общая длина колонки L=2,5 м, ширина каналов 150 мкм, глубина 100 мкм.

Пример конкретного выполнения способа и устройства для его осуществления

Предлагаемый способ получения микрохроматографических колонок выполняли на плоских пластинах (толщина ~2 мм), изготовленных из трех различных материалов: кремний (колонка №1), титан (колонка №2), фторопласт (колонка №3).

Для получения каналов на плоских пластинах для микрохроматографических колонок №1-3 использовали метод лазерной абляции ни промышленной установке фирмы TROTE C «Speedy 11» с лазером Synrad (USA) мощностью 25 ватт, длина волны 10,6 мкм. Чертеж колонки в виде плоской спирали выполняли на компьютере установки.

Герметизацию полученных каналов для микрохроматографических колонок проводили методом термического связывания (склеивания) со стеклянной пластиной через пленку из полиметилметакрилата марки ТОСП при температуре 110-130°С под вакуумом.

В известном способе каналы на плоской кремниевой пластине для микрохроматографической колонки №4 выполняли методом МЭМС-технологии. Колонку №4 герметизировали со стеклом марки Пирекс методом анодного сращивания.

Полученные микрохроматографические колонки №1-4 промывали ацетоном, затем дистиллированной водой по 30 мин со скоростью 1-2 см3/мин при температуре колонок Тс=100°С. После этого колонки продували инертным газом, ступенчато повышая температуру в термостате от 60 до 250°С и в течение двух часов.

Микрохроматографические колонки №1-4 заполняли раствором неподвижной жидкости апиезон-L в хлороформе статическим методом с последующим удалением растворителя из колонки под вакуумом. Толщина пленки неподвижной жидкости на внутренней поверхности микрохроматографических колонок №1-4 составила около 0,5 мкм.

Изготовленные известным и предлагаемым способами микрохроматографические колонки №1-4 подвергали испытаниям на газовом хроматографе «Кристалл-5000.2», ЗАО СКБ «Хроматэк» с пламенно-ионизационным детектором. В качестве объекта исследования использовали модельную смесь, содержащую метан, бензол и циклогексан.

Режим работы хроматографа:

Температура испарителя, °C 100±0,6 Температура термостата колонки, °С 75±0,5 Расход газа-носителя азота в колонке, см3/мин 0,9±0,015 Расход газа-носителя в линии сброса, см3/мин 55±1,1 Объем вводимой пробы на анализ, мкл 0,2±0,02

По результатам хроматографического анализа модельной смеси рассчитывали:

1. Число эффективных теоретических тарелок колонки Neff по уравнению

где t R ' = t R t M - приведенное время удерживания бензола;

tR и TM - времена удерживания бензола и метана соответственно;

τh - ширина полосы пика бензола, измеренная на середине высоты в единицах времени.

2. Высоту, эквивалентную теоретической тарелке Н для бензола

где L=2,5 м - длина колонки.

3. Фактор разделения α по уравнению

где t R 2 ' и t R 1 ' - приведенные времена удерживания циклогексана и бензола, причем t R 2 ' > t R 1 ' .

Результаты экспериментов сведены в таблицу.

Сравнительные данные экспериментальной проверки известного и предлагаемого способов Наименование Известный Предлагаемый Колонка №4 Колонка №3 Колонка №2 Колонка №1 1 Время удерживания, tR, с бензола 19,77 20,76 21,75 18,78 циклогексана 21,57 22,72 23,83 20,48 2 Мертвое время (удерживание метана), tM, c 5,89 5,72 5,78 5,68 3 Ширина полосы бензола, τh, с 0,78 0,81 0,87 0,74 4 Число эффективных теоретических тарелок Neff на 1,0 м колонки 702,3 764,7 747,4 693 5 Высота, эквивалентная теоретической тарелке, Н, мм 1,42 1,31 1,34 1,44 6 Фактор разделения, α для бензола и циклогексана 1,13 1,13 1,13 1,13

Как видно из приведенных в таблице данных, предлагаемый способ обеспечивает получение микрохроматографических колонок на плоских пластинах из различных материалов (кремний, титан, фторопласт) методом лазерной абляции. Основные хроматографические характеристики микрохроматографических колонок №1-3 отличаются от известного способа на микрохроматографической колонке №4 не более чем на ±10%. При этом фактор разделения бензола и циклогексана α=1,13 остался без изменения, что свидетельствует об идентичности природы и структуры слоя сорбента в исследуемых колонках.

Использование предлагаемого способа получения микрохроматографических колонок на плоских пластинах из различных материалов методом лазерной абляции позволяет:

1. Организовать серийное производство высококачественных, экономически выгодных и метрологически воспроизводимых микрохроматографических колонок для проведения анализов в режимах как газоадсорбционной, так и газожидкостной хроматографии.

2. Разработать и выпускать отечественные микрохроматографы и микроанализаторы для контроля качества различных продуктов, например природных и нефтяных газов, мониторинг вредных веществ в воздухе рабочей зоны и др.

Похожие патенты RU2540231C1

название год авторы номер документа
Микрохроматограф с бинарными колонками на плоскости 2018
  • Платонов Игорь Артемьевич
  • Арутюнов Юрий Иванович
  • Платонов Владимир Игоревич
  • Платонов Валерий Игоревич
  • Чечет Иван Викторович
  • Матвеев Сергей Геннадьевич
RU2691666C1
СПОСОБ ПОЛУЧЕНИЯ ГАЗОЖИДКОТВЕРДОФАЗНЫХ МИКРОХРОМАТОГРАФИЧЕСКИХ КОЛОНОК НА КРЕМНИЕВЫХ ПЛАСТИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Платонов Игорь Артемьевич
  • Арутюнов Юрий Иванович
  • Павельев Владимир Сергеевич
  • Платонов Владимир Игоревич
  • Павлова Лариса Викторовна
  • Новикова Екатерина Анатольевна
RU2540067C1
ПЛАНАРНАЯ ГАЗОХРОМАТОГРАФИЧЕСКАЯ КОЛОНКА С ПИЛЛАРАМИ КАПЛЕВИДНОГО ПРОФИЛЯ СЕЧЕНИЯ 2023
  • Миланина Ксения Игоревна
  • Платонов Владимир Игоревич
  • Агафонов Андрей Николаевич
  • Андреев Тарас Андреевич
  • Дюжев Николай Алексеевич
  • Чиненков Максим Юрьевич
  • Парамонов Владислав Витальевич
RU2818140C1
ГАЗОВЫЙ МИКРОХРОМАТОГРАФ ДЛЯ АНАЛИЗА ОРГАНИЧЕСКИХ И НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ 2014
  • Платонов Игорь Артемьевич
  • Арутюнов Юрий Иванович
  • Платонов Владимир Игоревич
  • Горюнов Максим Глебович
RU2571451C1
Многоцелевой планарный микрохроматограф 2015
  • Платонов Игорь Артемьевич
  • Арутюнов Юрий Иванович
  • Платонов Владимир Игоревич
  • Горюнов Максим Глебович
  • Новикова Екатерина Анатольевна
  • Никитченко Наталья Викторовна
  • Платонов Валерий Игоревич
RU2615053C1
Минитермостат для планарных микрохроматографических колонок 2016
  • Платонов Игорь Артемьевич
  • Арутюнов Юрий Иванович
  • Павельев Владимир Сергеевич
  • Платонов Владимир Игоревич
  • Горюнов Максим Глебович
  • Новикова Екатерина Анатольевна
RU2634095C1
Планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе 2017
  • Платонов Игорь Артемьевич
  • Арутюнов Юрий Иванович
  • Платонов Владимир Игоревич
  • Анисимов Михаил Юрьевич
  • Матвеев Сергей Сергеевич
RU2660392C1
СПОСОБ ТЕРМИЧЕСКОГО СОЕДИНЕНИЯ СТЕКЛЯННЫХ ПЛАСТИН С МИКРОСТРУКТУРАМИ НА ОДНОЙ ИЗ ИХ ПОВЕРХНОСТЕЙ 2020
  • Агафонов Андрей Николаевич
  • Андреев Тарас Андреевич
  • Миланина Ксения Игоревна
  • Платонов Владимир Игоревич
RU2766979C1
Способ изготовления малогабаритной атомной ячейки с парами щелочного металла 2023
  • Казакин Алексей Николаевич
  • Карасев Платон Александрович
  • Комаревцев Иван Михайлович
  • Кондратьева Анастасия Сергеевна
  • Эннс Яков Борисович
RU2819863C1
СПОСОБ ПОЛУЧЕНИЯ КАПИЛЛЯРНЫХ КОЛОНОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Онучак Людмила Артёмовна
  • Арутюнов Юрий Иванович
  • Платонов Игорь Артемьевич
  • Жосан Анна Ивановна
  • Жилкин Дмитрий Юрьевич
RU2356048C2

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ МИКРОХРОМАТОГРАФИЧЕСКИХ КОЛОНОК НА ПЛОСКИХ ПЛАСТИНАХ

Изобретение используется для получения микрохроматографических колонок на плоских пластинах для анализа сложных смесей веществ природного и техногенного происхождения в различных отраслях промышленности: химической, нефтяной, газовой, медицине, экологии и др. Сущность изобретения заключается в том, что на поверхности плоской пластины получают каналы для микрохроматографической колонки с последующей их герметизацией и заполнением соответствующим сорбентом, причем каналы для микрохроматографической колонки на плоской пластине получают методом лазерной абляции, а плоские пластины выполняют из различных металлов, кремния, стекла или полимеров. Кроме того, герметизацию микрохроматографической колонки проводят стеклянной пластиной через прокладку из полимерной пленки под вакуумом при воздействии температуры Техническим результатом изобретения является расширение ассортимента материалов для изготовления микрохроматографических колонок с использованием метода лазерной абляции. 1 з.п. ф-лы, 1 ил., 1 табл.

Формула изобретения RU 2 540 231 C1

1. Способ получения микрохроматографических колонок на плоских пластинах, заключающийся в создании каналов на поверхности пластины, при котором на поверхности плоской пластины получают каналы для микрохроматографической колонки с последующей их герметизацией и заполнением соответствующим сорбентом, отличающийся тем, что каналы для микрохроматографической колонки на плоской пластине получают методом лазерной абляции, а плоские пластины выполняют из различных металлов, кремния, стекла или полимеров.

2. Способ по п.1, отличающийся тем, что герметизацию каналов микрохроматографической колонки проводят стеклянной пластиной через прокладку из полимерной пленки под вакуумом при воздействии температуры.

Документы, цитированные в отчете о поиске Патент 2015 года RU2540231C1

Jerman G.H., Terry S
C
A miniature gas chromatograph for atmospheric monitoring // Environment International,
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Спускная труба при плотине 0
  • Фалеев И.Н.
SU77A1
US 0005888390 A1 30.03.1999
СПОСОБ ПОЛУЧЕНИЯ КАПИЛЛЯРНЫХ КОЛОНОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Арутюнов Юрий Иванович
  • Онучак Людмила Артёмовна
  • Платонов Игорь Артемьевич
  • Жосан Анна Ивановна
  • Жилкин Дмитрий Юрьевич
RU2356046C2
Козин С., Федулов А., Пауткин В., Баринов И
Микроэлектронные датчики физических величин на основе МЭМС-технологий// Компоненты и технологии, N1
Пишущая машина для тюркско-арабского шрифта 1922
  • Мадьярова А.
  • Туганов Т.
SU24A1

RU 2 540 231 C1

Авторы

Платонов Игорь Артемьевич

Арутюнов Юрий Иванович

Голубев Олег Николаевич

Никитченко Наталья Викторовна

Платонов Владимир Игоревич

Даты

2015-02-10Публикация

2013-09-05Подача