МЕМБРАНА ДЛЯ РАЗДЕЛЕНИЯ СМЕСИ МЕТАНОЛ - МЕТИЛАЦЕТАТ Российский патент 2015 года по МПК B01D71/64 B82B3/00 

Описание патента на изобретение RU2547751C1

Предложение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам, и заключается в создании новой полимерной мембраны, предназначенной для разделения смеси метанол-метилацетат методом первапорации. Предложение может быть использовано в химической, нефтехимической, фармацевтической и других отраслях промышленности, а также при решении экологических и энергетических задач.

В последние годы мембранные технологии все активнее внедряются при решении сложных задач современной промышленности. Метод первапорации, который относится к экономичным, безопасным и экологически предпочтительным мембранным технологиям, успешно используется для разделения азеотропных, изомерных, близкокипящих и чувствительных к температуре жидких смесей. Наиболее сложной задачей метода первапорации является разделение смеси органических жидкостей как двухкомпонентных, так и многокомпонентных. Решение каждой конкретной задачи требует выбора подходящих мембран из известных промышленных образцов, а в ряде случаев необходима разработка новых мембран.

Важными продуктами химической промышленности являются простейший одноатомный спирт - метанол и сложный эфир спирта и уксусной кислоты - метилацетат, которые находят широкое применение в качестве реагентов и сред на химических производствах. Совместное участие метанола и метилацетата имеет место в ряде технологических процессов, после чего возникает проблема очистки или утилизации нецелевых продуктов процесса. Например, метанол и метилацетат участвуют в промышленных процессах синтеза уксусной кислоты и уксусного ангидрида. Оптимизация промышленного производства бутилацетата по реакции переэтерификации н-бутанола с метилацетатом, когда образуется бутилацетат и метанол, требует отвода метанола для эффективного протекания этой равновесной реакции. Крупномасштабное производство поливинилового спирта алкоголизом поливинилацетата осуществляется в среде метанола, побочным продуктом этого процесса является метилацетат. Смесь метилацетата и метанола извлекают из маточного раствора этого процесса с целью разделения или использования в других процессах [Энциклопедия полимеров. М., 1974, т.2. С.787-792].

Проблема разделения смеси метанола и метилацетата и утилизации отходов является особенно важной задачей, так как процессы переработки осложняются токсичностью компонентов этой смеси и существованием точки азеотропного состава: 18 мас.% метанола и 82 мас.% метилацетата при 760 мм рт.ст. [S. Ohe, Vapor-Liquid Equilibrium Data, Elsevier, Amsterdam, 1989, pp.273-275].

Известно, что для разделения смеси метанол-метилацетат может быть использован ресурсосберегающий мембранный метод - первапорация. В процессе первапорации жидкость сорбируется на поверхности мембраны, диффундирует через мембрану, а затем десорбируется и удаляется с противоположной стороны мембраны в виде паров с низким парциальным давлением, которое достигается вакуумированием. Разделение жидких органических смесей методом первапорации осуществляется за счет преобладающей проницаемости одного из компонентов смеси в мембране. Для первапорационного разделения смеси метанол-метилацетат с преобладающей проницаемостью метанола были исследованы промышленные мембраны из купрофана - целлюлозы, восстановленной медно-аммиачным способом, и промышленные мембраны на основе поливинилового спирта Pervap 2255-40, Pervap 2255-50, Pervap 2255-60 и Pervap 2255-30. Последний тип мембран обладает транспортными характеристиками, превосходящими аналогичные свойства других описанных мембран [S. Sain, S. Dincer, O.T. Savascyi, Pervaporation of methanol-methylacetate binary mixtures. Chem. Eng. Proc. 37 (1998) 203-206, S. Steinigeweg, J. Gmehling, Transesterification processes by combination of reactive distillation and pervaporation, Chem. Eng. Proc. 43 (2004) 447-456); D. Gorri, R. Ibanez, I. Ortiz, Comparative study of the separation of methanol-methylacetate mixtures by pervaporation and vapor permeation using a commercial membrane. Journal of Membrane Science 280 (2006) 582-593].

Недостатком известных промышленных мембран с преобладающей проницаемостью для метанола является тот факт, что они обладают низким фактором разделения смеси метанол-метилацетат. Ограниченный ассортимент промышленных мембран препятствует выбору более подходящих для данного процесса, что является основанием к разработке новых мембранных материалов.

Наиболее близкой мембраной для разделения смеси метанол-метилацетат, включающей полимерный материал с преобладающей проницаемостью для метанола, является мембрана Pervap 2255-30, состоящая из химически стабильной тканевой основы, пористого полиакрилонитрила и селективного слоя из поливинилового спирта толщиной 3 мкм, производство компании Sulzer Chemtech (Neunkirchen, Germany). [D. Gorri, R. Ibanez, I. Ortiz Comparative study of the separation of methanol-methylacetate mixtures by pervaporation and vapor permeation using a commercial membrane. Journal of Membrane Science 280 (2006) 582-593].

Существенным и очевидным недостатком указанного прототипа является низкий фактор разделения смеси метанол-метилацетат, а именно фактор разделения смеси 20% метанола и 80% метилацетата не превышает 4.8. В результате мембрана обладает недостаточно хорошими эксплуатационными свойствами.

Технической задачей и положительным результатом предлагаемого изобретения является создание мембраны, обладающей высокой разделительной способностью для первапорации смеси метанол-метилацетат, длительным временем эксплуатации, а также устойчивостью по отношению к разделяемым смесям. Разработанная мембрана позволит разделять азеотропную смесь, проводить эффективную очистку метилацетата от примесей метанола, регенерировать указанные реагенты после проведения синтезов, избавит от необходимости утилизации отработанных растворов, без нанесения ущерба экологии.

Указанная задача и технический результат достигались за счет создания мембраны для разделения смеси метанол-метилацетат, включающей полимерный материал с преобладающей проницаемостью для метанола, при этом в качестве полимерного материала мембраны использован нанокомпозит на основе полифенилен-изо-фталамида (ПА), содержащий 1÷3 масс.% наноалмазов (НА); мембрана выполнена в виде непористой плотной пленки толщиной 15÷40 мкм; указанный нанокомпозит получен твердофазным взаимодействием в результате диспергирования порошка наноалмазов в матрице полифенилен-изо-фталамида. Наноалмазы - углеродные структуры с размером кристаллов 1-10 нм, содержащие на поверхности различные функциональные группы.

Появлению улучшенных транспортных свойств в мембране из нанокомпозитов ПА/НА способствовали следующие факторы: i) равномерное диспергирование наночастиц в матрице полимера за счет твердофазного синтеза композита; ii) наличие донорно-акцепторного взаимодействия между функциональными группами ПА и наноалмазов; iii) однородная структура мембран с развитыми межповерхностными транспортными каналами. Высокие механические и пленкообразующие свойства использованного матричного ПА с молекулярной массой 105 кДа и плотностью 1.30 г/см3 обеспечивают надежные эксплуатационные характеристики мембран.

Мембрана характеризуются тем, что представляет собой непористую пленку, состоящую из композита ПА (99-95 масс.%) и наноалмазов (1-5 масс.%) толщиной 15÷40 мкм. Эффективность разделения смесей метанол-метилацетат была подтверждена в процессе первапорации этих смесей, содержащих от 5 до 22 масс.% метанола, при использовании ячейки с эффективной площадью мембраны 14.8 см2 в вакуумном режиме при остаточном давлении под мембраной 0.2 мбар и температуре 25°C. Состав исходной смеси и пермеата определяли методом газовой хроматографии с использованием хроматографа "Цвет" (Россия), оснащенного детектором по теплопроводности (катарометром).

Эффективность мембраны оценивали по таким эксплуатационным характеристикам, как фактор разделения смеси и проницаемость мембраны. Фактор разделения двухкомпонентной смеси рассчитывали по формуле:

αметанол/МА=(Xметанол/XMA)/(Yметанол/YМА),

где Xметанол, XМА - массовые доли метанола и метилацетата (МА) в пермеате, Yметанол, YМА - массовые доли этих компонентов в исходной смеси. Проницаемость мембраны определялась количеством пермеата, прошедшего через единицу площади мембраны за единицу времени, и нормировалась на толщину 3 мкм для сравнения с прототипом.

Полученные характеристики мембран на основе ПА с различным содержанием НА, измеренные в разных условиях, приведены в следующих примерах.

Пример 1. Мембрану для разделения смеси метанол-метилацетат готовили из нанокомпозита ПА/НА (1%) следующим образом.

Композит ПА/НА (1%) получали при смешивании 0.99 г порошка ПА и 0.01 г порошка НА в агатовой ступке с последующим твердофазным взаимодействием в результате диспергирования при перетиранием этой смеси в течение часа до получения однородной смеси. Затем добавляли 13.3 мл (12.5 г) диметилацетамида (ДМА), содержащего 0.7 масс.% хлорида лития (стабилизатор раствора), для получения 8%-ного раствора нанокомпозита. Раствор ПА/НА (1%) готовили при 40°C при перемешивании на механической мешалке в течение трех часов с последующей обработкой ультразвуком в течение 1 часа.

Для приготовления мембраны 8%-ный раствор ПА/НА (1%) в ДМА наносили поливом на стеклянную подложку, помещали на уравновешенный столик в термостат при 60°C на 2 дня для испарения растворителя. Высушенную мембрану помещали в метанол для удаления остаточного растворителя. Окончательную сушку мембраны проводили в вакуумируемом термостате при 60°C в течение недели. В результате была получена плотная непористая мембрана, толщина которой составляла 35 мкм. Данные ИК-Фурье спектроскопии и сканирующей электронной микроскопии свидетельствовали о наличии взаимодействия между функциональными группами ПА и наноалмазами и о равномерном диспергировании НА в матрице ПА.

Характеризацию транспортных свойств мембраны, состоящей из ПА/НА (1%), осуществляли в процессе первапорации смеси 18 масс.% метанола и 82 масс.% метилацетата при температуре 25°C. Проницаемость мембраны составляла 2.18 кг/м2·ч, преимущественное выделение метанола осуществлялось с фактором разделения 12.0.

В случае, когда количество метанола в исходной смеси было равно 5 масс.%, проницаемость составляла 1.52 кг/м2·час, а фактор разделения - 16.7.

В случае, когда количество метанола в исходной смеси было равно 10 масс.%, проницаемость составляла 1.77 кг/м2·час, а фактор разделения - 14.3.

В случае, когда количество метанола в исходной смеси было равно 22 масс.%, проницаемость возрастала до 2.40 кг/м2·час, а фактор разделения составлял 10.6.

Пример 2. Мембрану для разделения смеси метанол-метилацетат готовили из нанокомпозита ПА/НА (3%) следующим образом.

Композит ПА/НА (3%) получали при смешивании 0.97 г порошка ПА и 0.03 г порошка НА в ступке. Далее процесс приготовления нанокомпозита, 8%-ного раствора ПА/НА (3%) в ДМА и мембраны были аналогичны описанным в примере 1. В результате была получена плотная непористая мембрана, толщина которой составляла 25 мкм.

Характеризацию транспортных свойств мембраны, состоящей из ПА/НА (3%), осуществляли в процессе первапорации смеси 18 масс.% метанола и 82 масс.% метилацетата при 25°C. Проницаемость мембраны составляла 2.57 кг/м2·ч, преимущественное выделение метанола осуществлялось с фактором разделения 13.0.

В случае, когда количество метанола в исходной смеси было равно 5 масс.%, проницаемость составляла 1.67 кг/м2·час, а фактор разделения увеличивался до 17.5.

В случае, когда количество метанола в исходной смеси было равно 10 масс.%, проницаемость составляла 2.09 кг/м2·час, а фактор разделения - 15.2.

В случае, когда количество метанола в исходной смеси было равно 22 масс.%, проницаемость возрастала до 2.84 кг/м2·час, а фактор разделения составлял 11.2.

Пример 3. Мембрану для разделения смеси метанол-метилацетат готовили из нанокомпозита ПА/НА (5%) следующим образом.

Композит ПА/НА (5%) получали при смешивании 0.95 г порошка ПА и 0.05 г порошка НА в ступке. Далее процесс приготовления нанокомпозита, 8%-ного раствора ПА/НА (5%) в ДМА и мембраны были аналогичны описанным в примере 1. В результате была получена плотная непористая мембрана, толщина которой составляла 40 мкм.

Характеризацию транспортных свойств мембраны, состоящей из ПА/НА (5%), осуществляли в процессе первапорации смеси 18 масс.% метанола и 82 масс.% метилацетата при 25°C. Проницаемость мембраны составляла 2.40 кг/м2·ч, преимущественное выделение метанола осуществлялось с фактором разделения 9.2.

В случае, когда количество метанола в исходной смеси было равно 5 масс.%, проницаемость составляла 1.59 кг/м2·час, а фактор разделения увеличивался до 14.0.

В случае, когда количество метанола в исходной смеси было равно 10 масс.%, проницаемость составляла 1.90 кг/м2·час, а фактор разделения - 12.0.

В случае, когда количество метанола в исходной смеси было равно 22 масс.%, проницаемость возрастала до 2.67 кг/м2·час, а фактор разделения составлял 7.5.

Пример 4. Мембрану для разделения смеси метанол-метилацетат готовили из ПА следующим образом.

Для приготовления 8%-ного раствора ПА в ДМА к 1.0 г ПА добавляли 13.3 мл (12.5 г) диметилацетамида (ДМА), содержащего 0.7% LiCl (для стабилизации раствора). Далее процесс приготовления 8%-ного раствора ПА в ДМА и мембраны были аналогичны описанным в примере 1. В результате была получена плотная непористая мембрана, толщина которой составляла 15 мкм.

Характеризацию транспортных свойств ПА мембраны осуществляли в процессе первапорации смеси 18 масс.% метанола и 82 масс.% метилацетата при 25°C. Проницаемость мембраны составляла 1.68 кг/м2·ч, преимущественное выделение метанола осуществлялось с фактором разделения 9.6.

В случае, когда количество метанола в исходной смеси было равно 5 масс.%, проницаемость составляла 1.08 кг/м2·час, а фактор разделения увеличивался до 13.0.

В случае, когда количество метанола в исходной смеси было равно 10 масс.%, проницаемость составляла 1.32 кг/м2·час, а фактор разделения - 11.4.

В случае, когда количество метанола в исходной смеси было равно 22 масс.%, проницаемость возрастала до 1.89 кг/м2·час, а фактор разделения составлял 8.5.

Как видно из примеров, наилучшими разделительными свойствами обладают нанокомпозитные мембраны, содержащие 1÷3 масс.% НА. Отсутствие нанодобавок в ПА мембране или увеличение количества НА до 5 масс.% приводит к снижению эффективности разделения смеси метанол-метилацетат.

Как видно из таблицы, использование нанокомпозитной мембраны, содержащей 1÷3 масс.% НА, при первапорации азеотропной смеси метанол-метилацетат позволяет повысить фактор разделения в 2÷3 раза по сравнению с лучшей известной мембраной-прототипом. Проницаемость нанокомпозитной мембраны, измеренная при 25°C, сравнима с проницаемостью мембраны-прототипа при 40°C (более высокой температуре), при том что проницаемость мембран имеет тенденцию к повышению с температурой. Выход за рамки заявленных интервальных параметров (Таблица, оп. №3 - отсутствие нанодобавок и оп. №4 - увеличение их количества до 5 масс.%) приводит к ухудшению реализации заявляемого изобретения, что подтверждает правильность выбранных операций, режимов и параметров.

Таким образом, разработанная нанокомпозитная мембрана на основе ПА, содержащая 1÷3 масс.% НА, характеризуется высокой разделительной способностью при первапорации смеси метанол-метилацетат, длительным временем эксплуатации, а также устойчивостью по отношению к разделяемым смесям. Разработанная мембрана позволит выделять метанол из азеотропной смеси с фактором разделения, равным 13.0, проводить эффективную очистку метилацетата от примесей метанола, регенерировать указанные реагенты после проведения синтезов, избавит от необходимости утилизации отработанных растворов без нанесения ущерба экологии. Использование данной первапорационной мембраны позволит оптимизировать процесс получения бутилацетата по реакции переэтерификации в результате смещения равновесия за счет отвода метанола из реакционной смеси.

Похожие патенты RU2547751C1

название год авторы номер документа
ГИБРИДНАЯ ПОЛИМЕРНАЯ МЕМБРАНА ДЛЯ РАЗДЕЛЕНИЯ СМЕСИ МЕТАНОЛА И ГЕКСАНА 2016
  • Полоцкая Галина Андреевна
  • Тян Надежда Сергеевна
  • Мелешко Тамара Константиновна
  • Якиманский Александр Вадимович
RU2623776C1
Мембрана для разделения метанолсодержащих смесей 2022
  • Пулялина Александра Юрьевна
  • Ростовцева Валерия Алексеевна
  • Файков Илья Ильич
  • Полоцкая Галина Андреевна
RU2798832C1
Асимметричная полимерная первапорационная мембрана на основе полиимида для разделения компонентов различной полярности жидких смесей и для обессоливания 2019
  • Сапегин Денис Анджеевич
  • Кононова Светлана Викторовна
RU2701532C1
МЕМБРАНА ДЛЯ РАЗДЕЛЕНИЯ СПИРТОВЫХ СМЕСЕЙ МЕТОДОМ ПЕРВАПОРАЦИИ 2011
  • Полоцкая Галина Андреевна
  • Пулялина Александра Юрьевна
  • Гойхман Михаил Яковлевич
  • Подешво Ирина Владимировна
  • Тойкка Александр Матвеевич
RU2471539C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНЫХ МЕМБРАН С ФУЛЛЕРЕНСОДЕРЖАЩИМ ПОЛИМЕРНЫМ СЕЛЕКТИВНЫМ СЛОЕМ 2009
  • Полоцкая Галина Андреевна
  • Пенькова Анастасия Владимировна
RU2414953C1
КОМПОЗИЦИОННАЯ АСИММЕТРИЧНАЯ ПОЛИМЕРНАЯ ПЕРВАПОРАЦИОННАЯ МЕМБРАНА 2019
  • Сапегин Денис Анджеевич
RU2714644C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОЛИМЕРНЫХ ДИФФУЗИОННЫХ МЕМБРАН И ДИФФУЗИОННЫЕ МЕМБРАНЫ, ПОЛУЧЕННЫЕ ЭТИМ СПОСОБОМ 2000
  • Кононова С.В.
  • Кузнецов Ю.П.
  • Иванова В.Н.
  • Ромашкова К.А.
  • Кудрявцев В.В.
RU2211725C2
ТОНКИЕ ПЕРВАПОРАЦИОННЫЕ МЕМБРАНЫ 2010
  • Вандезанде Питер
  • Клас Стан Вик Валери
  • Мюлленс Стивен Ханс Рик Ваутер
RU2492918C2
АСИММЕТРИЧНАЯ ПОЛИМЕРНАЯ ПЕРВАПОРАЦИОННАЯ МЕМБРАНА 1996
  • Кузнецов Ю.П.
  • Кононова С.В.
  • Ромашкова К.А.
  • Кудрявцев В.В.
  • Гусинская В.А.
RU2126291C1
ПЕРВАПОРАЦИОННАЯ МЕМБРАНА ДЛЯ РАЗДЕЛЕНИЯ СМЕСИ ПРОСТЕЙШИХ МОНО- И ДВУХАТОМНЫХ СПИРТОВ 2013
  • Полоцкая Галина Андреевна
  • Виноградова Людмила Викторовна
  • Краснопеева Елена Леонидовна
RU2543203C2

Реферат патента 2015 года МЕМБРАНА ДЛЯ РАЗДЕЛЕНИЯ СМЕСИ МЕТАНОЛ - МЕТИЛАЦЕТАТ

Изобретение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам. Мембрана получена из полимерного материала с преобладающей проницаемостью для метанола. В качестве полимерного материала мембраны использован нанокомпозит на основе полифенилен-изо-фталамида, содержащий 1-3 мас.% наноалмазов. Мембрана выполнена в виде непористой плотной пленки толщиной 15-40 мкм. Указанный нанокомпозит получен твердофазным взаимодействием в результате диспергирования порошка наноалмазов в матрице полифенилен-изо-фталамида. Мембрана характеризуется высокой разделительной способностью при первапорации смеси метанол-метилацетат, длительным временем эксплуатации, а также устойчивостью по отношению к разделяемым смесям. 1 з.п. ф-лы, 1 табл., 4 пр.

Формула изобретения RU 2 547 751 C1

1. Мембрана для разделения смеси метанол-метилацетат, включающая полимерный материал с преобладающей проницаемостью для метанола, отличающаяся тем, что в качестве полимерного материала мембраны использован нанокомпозит на основе полифенилен-изо-фталамида, содержащий 1÷3 мас.% наноалмазов; при этом мембрана выполнена в виде непористой плотной пленки толщиной 15÷40 мкм.

2. Мембрана по п.1, отличающаяся тем, что указанный нанокомпозит получен твердофазным взаимодействием в результате диспергирования порошка наноалмазов в матрице полифенилен-изо-фталамида.

Документы, цитированные в отчете о поиске Патент 2015 года RU2547751C1

Penkova A.V
, Polotsaya G.A., Toikka A
A.M., Trchova M., Slouf M., Urbanova M., Brus J., Brozova L., Pientka Z., Structure and Pervaporation Properties of Poly(phenylene-iso-phtalamide) Membranes Modified by Fullerene C60
Macromolecular Materials and Engineering, 2009, V.294, p.432-440
СПОСОБ ПОЛУЧЕНИЯ ДИФФУЗИОННЫХ ФУЛЛЕРЕНОЛСОДЕРЖАЩИХ МЕМБРАН 2012
  • Пенькова Анастасия Владимировна
  • Семенов Константин Николаевич
RU2501597C1
Состав для формования полиамидной ультрафильтрационной мембраны 1990
  • Бильдюкевич Александр Викторович
  • Праценко Светлана Анатольевна
  • Солдатов Владимир Сергеевич
SU1757726A1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОЙ И ОЛИГОМЕРНОЙ ФРАКЦИЙ СТОЛБНЯЧНОГО АНАТОКСИНА 1994
  • Ермолаев А.В.
  • Далин М.В.
  • Якушевич Ю.Е.
  • Закгейм Д.А.
  • Кулак В.Г.
  • Попаденко Р.В.
  • Быков В.А.
  • Гусев В.К.
  • Дюмаев К.М.
  • Фиш Н.Г.
  • Айзенштейн Э.М.
  • Борщев А.П.
RU2065765C1

RU 2 547 751 C1

Авторы

Полоцкая Галина Андреевна

Авагимова Наталья Вадимовна

Тойкка Александр Матвеевич

Даты

2015-04-10Публикация

2014-02-14Подача