КАНАЛ ИЗМЕРЕНИЯ УГЛОВОЙ СКОРОСТИ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ Российский патент 2015 года по МПК G01C21/10 

Описание патента на изобретение RU2548053C1

Изобретение относится к области приборостроения, а именно к средствам измерения угловой скорости в инерциальных навигационных системах.

Известен канал измерения угловой скорости инерциальной навигационной системы [1], содержащий гироскоп с датчиком угла и датчиком момента с компенсационной катушкой, усилитель, нагрузочный резистор, причем выход датчика угла подсоединен к входу усилителя, один вывод компенсационной катушки подсоединен к выходу усилителя, другой вывод компенсационной катушки подключен к нагрузочному резистору.

Наиболее близким по технической сущности является канал измерения угловой скорости инерциальной навигационной системы [2], содержащий датчик угловой скорости (ДУС), аналого-цифровой преобразователь (АЦП), перепрограммируемое постоянное запоминающееся устройство (ППЗУ), устройство контроля, процессор, причем ДУС содержит гироскоп с датчиком угла и датчиком момента с компенсационной катушкой, усилитель с последовательно соединенными каскадом усиления переменного тока, демодулятором и усилителем постоянного тока, первый и второй последовательно соединенные резисторы, выход датчика угла подсоединен к входу каскада усиления переменного тока, один вывод компенсационной катушки подсоединен к выходу усилителя постоянного тока, другой вывод компенсационной катушки подключен к первому резистору и входу АЦП, точка соединения первого и второго резисторов подсоединена к третьему резистору, который подсоединен к входу усилителя постоянного тока, выход АЦП подключен к процессору.

Недостатком такого канала измерения угловой скорости инерциальной навигационной системы является отсутствие информации о работоспособности следящей системы ДУС.

Технический результат изобретения состоит в том, что обеспечивается контроль работоспособности следящей системы ДУС.

Данный технический результат достигается в канале измерения угловой скорости инерциальной навигационной системы, содержащем датчик угловой скорости (ДУС), аналого-цифровой преобразователь (АЦП), перепрограммируемое постоянное запоминающееся устройство (ППЗУ), устройство контроля, процессор, причем ДУС содержит гироскоп с датчиком угла и датчиком момента с компенсационной катушкой, усилитель с последовательно соединенными каскадом усиления переменного тока, демодулятором и усилителем постоянного тока, первый и второй последовательно соединенные резисторы, выход датчика угла подсоединен к входу каскада усиления переменного тока, один вывод компенсационной катушки подсоединен к выходу усилителя постоянного тока, другой вывод компенсационной катушки подключен к первому резистору и входу АЦП, точка соединения первого и второго резисторов подсоединена к третьему резистору, который подсоединен к входу усилителя постоянного тока, выход АЦП подключен к процессору, отличается тем, что в устройстве контроля выполнен канал контроля следящей системы ДУС, содержащий ключ, источник опорного напряжения (ИОН), выход ИОН подсоединен к четвертому резистору, который подсоединен к входу ключа, выход ключа подключен к точке соединения первого и второго резисторов, вход управления ключа подсоединен к процессору, выход ППЗУ подключен к процессору, причем в ППЗУ записан код напряжения U в точке соединения компенсационной катушки с первым резистором в соответствии с соотношением:

,

где UИОН - выходное напряжение ИОН;

r1 - сопротивление первого резистора;

r2 - сопротивление второго резистора;

r3 - сопротивление четвертого резистора;

r4 - сопротивление компенсационной катушки датчика момента.

Путем выполнения в устройстве контроля канала контроля следящей системы ДУС в составе ключа, источника опорного напряжения, записи в ППЗУ кода напряжения соответствующего условиям работоспособности следящей системы ДУС, подсоединения входа ключа к ИОН, выхода ключа к точке соединения первого и второго резисторов, входа управления ключа к процессору, выхода ППЗУ к процессору обеспечивается информация о реагировании следящей системы ДУС на входное воздействие, чем достигается контроль за работоспособностью следящей системы ДУС.

На фиг.1 представлена блок-схема канала измерения угловой скорости инерциальной навигационной системы.

Канал измерения угловой скорости инерциальной навигационной системы (фиг.1) содержит гироскоп 1 с выходной обмоткой 2 датчика угла индукционного типа и компенсационной катушкой 3 магнитоэлектрического датчика момента, процессор 4, АЦП 5, ППЗУ 6, ИОН 7 с выходным напряжением UИОН, ключ 8. В следящую систему ДУС входят обмотка 2 датчика угла, компенсационная катушка 3 датчика момента, усилитель с последовательно соединенными каскадом 9 усиления переменного тока, демодулятором 10 и усилителем постоянного тока 11. К обмотке 2 датчика угла подсоединен вход каскада 9 усиления переменного тока, к выходу усилителя постоянного тока 11 подсоединен один из выводов компенсационной катушки 3, ко второму выводу которой в точке «а» подключены последовательно соединенные первый резистор R1 и второй резистор R2. К точке «а» соединения компенсационной катушки 3 и первого резистора R1 подключен вход АЦП 5, выход которого подсоединен к процессору 4. Точка «б» соединения первого резистора R1 со вторым резистором R2 подключена к выходу ключа 8 и третьему резистору R3, который подсоединен к входу усилителя постоянного тока 11. Выход ИОН 7 подсоединен к четвертому резистору R4, подключенному к входу ключа 8. Выход ППЗУ 6 подключен к процессору 4, выход которого подсоединен к входу управления ключа 8. Один из выходов процессора 4 подключен к входу управления ППЗУ 6, где записан код напряжения U в точке «а» соединения компенсационной катушки 3 с первым резистором R1 в соответствии с соотношением:

Канал измерения угловой скорости инерциальной навигационной системы работает следующим образом. При наличии измеряемой угловой скорости датчик угла гироскопа 1 измеряет угловое отклонение ротора гироскопа 1, сигнал углового отклонения ротора с обмотки 2 поступает на вход каскада 9 усиления переменного тока, где он усиливается по амплитуде. Далее сигнал переменного тока с выхода каскада 9 усиления переменного тока в демодуляторе 10 преобразуется в напряжение постоянного тока, усиливается по величине и по мощности в усилителе постоянного тока 11. С выхода усилителя постоянного тока 11 напряжение подается на последовательно включенные компенсационную катушку 3 и резисторы R1, R2. Создаваемое протекающим через компенсационную катушку 3 током магнитное поле взаимодействует с магнитным полем постоянного магнита датчика момента. В результате создается момент, компенсирующий угловое отклонение ротора гироскопа. При этом на первом резисторе R1 падение напряжения составит U1, на втором резисторе R2 - U2. Сумма напряжений U1 и U2 будет мерой измеренной угловой скорости. При предполетной подготовке инерциальной системы ДУС измеряет угловую скорость, являющуюся проекцией на его измерительную ось угловой скорости Земли. Так как ДУС предназначен для измерения угловой скорости полета, на несколько порядков большей угловой скорости Земли, то ток компенсационной катушки 3 близок к нулю. Поэтому близка к нулю и сумма напряжений U1 и U2. Для проверки работоспособности следящей системы ДУС при предполетной подготовке инерциальной системы процессором 4 подается команда на вход управления ключа 8, по которой выход ИОН 7 подключается к точке соединения «б» первого резистора R1 со вторым резистором R2. Если следящая система ДУС отрабатывает входные воздействия, то напряжение Ua1 в точке «а» будет иметь значение в соответствии с формулой (1), то есть Ua1=U.

Если сигнал рассогласования следящей системы ДУС не проходит вплоть до выхода усилителя постоянного тока 11 из-за отказа, например датчика угла или каскада 9 усиления переменного тока, или демодулятора 10, или усилителя постоянного тока 11, то напряжение Ua2 в точке «а» будет соответствовать значению, описываемому выражением:

где Uмакс - максимальное выходное напряжение усилителя постоянного тока 11.

В том случае, когда будет отказ усилителя постоянного тока 11 или произойдет обрыв компенсационной катушки 3, то напряжение Ua3 в точке «а» будет иметь значение в соответствии с формулой:

Из выражений (2), (3) следует, что в случае отказа одного из устройств в цепи передачи сигнала следящей системы ДУС напряжение в точке «а» будет больше, чем описываемое формулой (1) напряжение в точке «а», которое соответствует нормальной работе следящей системы ДУС.

Преобразованное посредством АЦП 5 в код напряжение в точке «а» в процессоре 4 сравнивается с поступающим из ППЗУ 6 кодом напряжения U в точке «а» в соответствии с формулой (1). В случае несоответствия кода напряжения в точке «а» записанному в ППЗУ 6 коду напряжения U процессор 4 дает сигнал неисправности данного канала измерения угловой скорости инерциальной навигационной системы.

Таким образом обеспечивается контроль следящей системы канала измерения угловой скорости инерциальной навигационной системы.

Источники информации

1. Патент РФ №2368871 С2 кл. G01C 21/00. Бесплатформенный инерциальный измерительный преобразователь. 2007 г.

2. Патент РФ №2325620 С2 кл. G01C 21/10. Преобразователь инерциальной информации. 2006 г.

Похожие патенты RU2548053C1

название год авторы номер документа
ПРЕОБРАЗОВАТЕЛЬ ИНЕРЦИАЛЬНОЙ ИНФОРМАЦИИ 2006
  • Баженов Владимир Ильич
  • Будкин Владимир Леонидович
  • Бражник Валерий Михайлович
  • Голиков Валерий Павлович
  • Горбатенков Николай Иванович
  • Егоров Валерий Михайлович
  • Исаков Евгений Александрович
  • Краснов Владимир Викторович
  • Самохин Владимир Павлович
  • Сержанов Юрий Владимирович
  • Трапезников Николай Иванович
  • Федулов Николай Петрович
  • Юрыгин Виктор Федорович
RU2325620C2
ДАТЧИК УГЛОВОЙ СКОРОСТИ 2011
  • Баженов Владимир Ильич
  • Коренева Ольга Владимировна
  • Кузнецова Галина Константиновна
  • Литюшкина Татьяна Викторовна
  • Рябова Людмила Георгиевна
  • Сержанов Юрий Владимирович
  • Темляков Николай Алексеевич
  • Харитонов Виктор Иванович
RU2457493C1
ПРЕОБРАЗОВАТЕЛЬ ИНЕРЦИАЛЬНОЙ ИНФОРМАЦИИ 2001
  • Баженов В.И.
  • Бахонин К.А.
  • Будкин В.Л.
  • Джанджгава Г.И.
  • Никовский Е.А.
  • Темляков Н.А.
RU2199755C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ БЛОКА ОРИЕНТАЦИИ ИНТЕГРИРОВАННОЙ СИСТЕМЫ РЕЗЕРВНЫХ ПРИБОРОВ 2013
  • Самойлов Виктор Михайлович
  • Семёнов Игорь Алексеевич
RU2548056C1
УНИВЕРСАЛЬНЫЙ СТЕНД ДЛЯ КОНТРОЛЯ ПРЕЦИЗИОННЫХ ГИРОСКОПИЧЕСКИХ ИЗМЕРИТЕЛЕЙ УГЛОВОЙ СКОРОСТИ 2009
  • Калихман Дмитрий Михайлович
  • Калихман Лариса Яковлевна
  • Полушкин Алексей Викторович
  • Садомцев Юрий Васильевич
  • Нахов Сергей Федорович
  • Ермаков Роман Вячеславович
  • Депутатова Екатерина Александровна
  • Молчанов Алексей Владимирович
  • Чиркин Михаил Викторович
  • Измайлов Евгений Аркадьевич
RU2403538C1
УНИВЕРСАЛЬНЫЙ ШИРОКОДИАПАЗОННЫЙ СТЕНД ДЛЯ КОНТРОЛЯ ИЗМЕРИТЕЛЕЙ УГЛОВОЙ СКОРОСТИ 2012
  • Калихман Дмитрий Михайлович
  • Калихман Лариса Яковлевна
  • Садомцев Юрий Васильевич
  • Депутатова Екатерина Александровна
  • Нахов Сергей Федорович
  • Сапожников Александр Илларьевич
  • Межирицкий Ефим Леонидович
  • Никифоров Виталий Меркурьевич
RU2494345C1
БЕСПЛАТФОРМЕННЫЙ ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2007
  • Андреев Алексей Гурьевич
  • Бахонин Константин Алексеевич
  • Баженов Владимир Ильич
  • Будкин Владимир Леонидович
  • Ермаков Владимир Сергеевич
  • Краснов Владимир Викторович
RU2368871C2
НАВИГАЦИОННО-ТОПОГРАФИЧЕСКИЙ ВНУТРИТРУБНЫЙ ИНСПЕКТИРУЮЩИЙ СНАРЯД 2007
  • Бакурский Николай Николаевич
  • Антипов Борис Николаевич
  • Бакурский Александр Николаевич
  • Попов Владимир Александрович
  • Горшков Александр Николаевич
  • Афанасьев Алексей Викторович
  • Братков Илья Степанович
RU2321828C1
СТЕНД ДЛЯ КОНТРОЛЯ ИЗМЕРИТЕЛЕЙ УГЛОВЫХ СКОРОСТЕЙ 1995
  • Калихман Д.М.
  • Калихман Л.Я.
  • Пестунов А.Н.
  • Андрейченко К.П.
  • Улыбин В.И.
RU2115128C1
СИСТЕМА ПОЗИЦИОНИРОВАНИЯ ТРАССЫ ПОДЗЕМНОГО ТРУБОПРОВОДА 1999
  • Плотников П.К.
  • Синев А.И.
  • Мусатов В.Ю.
RU2152059C1

Реферат патента 2015 года КАНАЛ ИЗМЕРЕНИЯ УГЛОВОЙ СКОРОСТИ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ

Изобретение относится к области приборостроения, а именно к средствам измерения угловой скорости в инерциальных навигационных системах. Канал измерения угловой скорости инерциальной навигационной системы содержит датчик угловой скорости (ДУС), аналого-цифровой преобразователь (АЦП), перепрограммируемое постоянное запоминающееся устройство (ППЗУ), устройство контроля, процессор. ДУС содержит гироскоп с датчиком угла и датчиком момента с компенсационной катушкой, усилитель, к выходу которого подключены первый и второй резисторы. В месте соединения этих резисторов подсоединен третий резистор. В устройстве контроля выполнен канал контроля следящей системы ДУС, содержащий ключ, источник опорного напряжения (ИОН). Выход ИОН подсоединен к четвертому резистору, который подсоединен к входу ключа, выход ключа подключен к точке соединения первого и второго резисторов, вход управления ключа подсоединен к процессору, выход ППЗУ подключен к процессору. В ППЗУ записан код напряжения в точке соединения компенсационной катушки с первым резистором в соответствии с расчетным соотношением. Технический результат изобретения - обеспечение контроля работоспособности следящей системы ДУС. 1 ил.

Формула изобретения RU 2 548 053 C1

Канал измерения угловой скорости инерциальной навигационной системы, содержащий датчик угловой скорости (ДУС), аналого-цифровой преобразователь (АЦП), перепрограммируемое постоянное запоминающееся устройство (ППЗУ), устройство контроля, процессор, причем ДУС содержит гироскоп с датчиком угла и датчиком момента с компенсационной катушкой, усилитель с последовательно соединенными каскадом усиления переменного тока, демодулятором и усилителем постоянного тока, первый и второй последовательно соединенные резисторы, выход датчика угла подсоединен к входу каскада усиления переменного тока, один вывод компенсационной катушки подсоединен к выходу усилителя постоянного тока, другой вывод компенсационной катушки подключен к первому резистору и входу АЦП, точка соединения первого и второго резисторов подсоединена к третьему резистору, который подсоединен к входу усилителя постоянного тока, выход АЦП подключен к процессору, отличающийся тем, что в устройстве контроля выполнен канал контроля следящей системы ДУС, содержащий ключ, источник опорного напряжения (ИОН), выход ИОН подсоединен к четвертому резистору, который подсоединен к входу ключа, выход ключа подключен к точке соединения первого и второго резисторов, вход управления ключа подсоединен к процессору, выход ППЗУ подключен к процессору, причем в ППЗУ записан код напряжения U в точке соединения компенсационной катушки с первым резистором в соответствии с соотношением:
,
где UИОН - выходное напряжение ИОН;
r1 - сопротивление первого резистора;
r2 - сопротивление второго резистора;
r3 - сопротивление четвертого резистора;
r4 - сопротивление компенсационной катушки датчика момента.

Документы, цитированные в отчете о поиске Патент 2015 года RU2548053C1

ПРЕОБРАЗОВАТЕЛЬ ИНЕРЦИАЛЬНОЙ ИНФОРМАЦИИ 2006
  • Баженов Владимир Ильич
  • Будкин Владимир Леонидович
  • Бражник Валерий Михайлович
  • Голиков Валерий Павлович
  • Горбатенков Николай Иванович
  • Егоров Валерий Михайлович
  • Исаков Евгений Александрович
  • Краснов Владимир Викторович
  • Самохин Владимир Павлович
  • Сержанов Юрий Владимирович
  • Трапезников Николай Иванович
  • Федулов Николай Петрович
  • Юрыгин Виктор Федорович
RU2325620C2
RU 2058534 С1, 20.04.1996
US 4914598 А1, 03.04.1990
US 4303978 А1, 01.12.1981
БЕСПЛАТФОРМЕННЫЙ ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2007
  • Андреев Алексей Гурьевич
  • Бахонин Константин Алексеевич
  • Баженов Владимир Ильич
  • Будкин Владимир Леонидович
  • Ермаков Владимир Сергеевич
  • Краснов Владимир Викторович
RU2368871C2

RU 2 548 053 C1

Авторы

Харитонов Виктор Иванович

Баженов Владимир Ильич

Краснов Владимир Викторович

Трапезников Николай Иванович

Даты

2015-04-10Публикация

2013-11-27Подача