ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОГЕКСАНТИОЛА В ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ Российский патент 2015 года по МПК C07C319/04 C07C321/22 C25B3/00 

Описание патента на изобретение RU2550141C1

Изобретение относится к органической электрохимии, а именно к способам получения серосодержащих соединений в органических растворителях, в частности к способу получения циклогексантиола, который используется в синтезе физиологически активных веществ, модификаторов реакции полимеризации, одорантов, гербицидов, пестицидов и полимеров.

Известен способ получения циклогесантиола путем многократного контакта в реакторе циклогексена, сероводорода и безводного фтороводорода в качестве катализатора в среде н-пентана как растворителя [патент US 2454409, 1948]. Процесс проводится при t=32-38°С, р=0,86 МПа, время реакции составляет 22 мин.

К недостаткам данного способа следует отнести необходимость использования специфичного кислотного катализатора, который является химически опасным и токсичным веществом, повышенное давление, а также сложное аппаратурное оформление процесса получения циклогексантиола.

Известен способ получения циклогексантиола на основе циклогексена и сероводорода в условиях гетерогенного катализа [патент US 3963785, 1976]. В данном процессе применяют трубчатый реактор, который загружен катализатором Со-Мо, нанесенным на поверхность оксида алюминия. В качестве промотирующей составляющей катализатора используют сероуглерод, что позволяет исключить побочные и вторичные направления реакции, увеличить селективность целевого превращения субстрата и выход циклогексантиола. Температура проведения процесса t=100-350°C, р=1,72-5,17 МПа, мольное соотношение сероводорода и циклогексена составляет 1:1 или 5:1. Выход циклогексантиола достигает 62,0-69,4%.

Недостатками указанного способа являются: жесткие условия проведения процесса (повышенная температура и давление) и связанная с этим необходимость дополнительного аппаратурного оформления, проведение процесса в гетерогенных условиях с использованием дорогостоящего катализатора, который требует периодической регенерации, а также использование серосодержащей промотирующей добавки (сероуглерода) к катализатору, являющейся одновременно каталитическим ядом.

Известен способ синтеза циклогексантиола (выход 63-65%) с участием циклогексена и смеси сероводорода с 70%-ным раствором гидропероксида кумола в присутствии катализатора - хлорзамещенного железосодержащего фталоцианина - при температуре t=21°C [патент US 3548008, 1970]. Процесс осуществляют в автоклаве, в качестве побочного продукта получают дициклогексилсульфид.

Недостатками описанного способа получения циклогексантиола является необходимость повышенного давления в автоклаве, образование нежелательного побочного продукта реакции и проведение процесса в условиях металлокомплексного катализа, что требует достаточно значительных материальных затрат.

Наиболее близким по технической сути решением является способ получения циклогексантиола по правилу Марковникова [патент US 3270063, 1966], включающий реакцию циклогексена с тиоуксусной кислотой при температуре t=82-112°C и р=0,1 МПа в присутствии азобиизобутиронитрила. Тиоуксусную кислоту предварительно при t=50-55°С в течение 8 ч получают взаимодействием сероводорода и уксусного ангидрида с использованием пиридина в качестве катализатора. На следующей стадии при температуре t=110-115°С полученный тиоэфир отмывают от тиоуксусной кислоты и проводят реакцию омыления при температуре t=90°C 50%-ным раствором гидрооксида натрия. Дальнейшее взаимодействие тиоуксусной кислоты с циклогексеном приводит к получению циклогексантиола с выходом 75%.

Недостатками прототипа являются многостадийность и трудоемкость процесса, повышенная температура синтеза циклогексантиола, а также использование специфических реагентов.

Техническая задача - создание способа, позволяющего получать циклогексантиол из циклогексена и сероводорода в органических растворителях с высокой селективностью и относительно большим выходом при атмосферном давлении, без использования специфического катализатора.

Технический результат - снижение энергозатрат на проведение процесса получения циклогексантиола за счет снижения температуры и исключения катализатора. Он достигается тем, что в предлагаемом способе, включающем проведение электролиза смеси циклогексена с сероводорода при потенциале окисления сероводорода в органическом растворителе на фоне перхлората н-тетрабутиламмония, при температуре 20-25°С и атмосферном давлении, получают циклогексантиол (выход 34,5%) с последующим выделением целевого продукта известным способом. Селективность процесса - 86-90%.

Данный способ основывается на способности сероводорода к одноэлектронному окислению на платиновом аноде в органических апротонных растворителях на фоне перхлората н-тетрабутиламмония до катион-радикала при Епа=1,6 В (в ацетонитриле), обладающего в неводных средах сильными кислотными свойствами (рКа=-23). Фрагментация нестабильного катион-радикала сероводорода с отрывом протона приводит к образованию реакционно-способного тиильного радикала.

На основании данных, полученных в ходе проведения синтеза циклогексантиола взаимодействием циклогексена с сероводородом в условиях электрохимического инициирования реакции, схема процесса выглядит следующим образом:

Способ получения циклогексантиола включает осушку сероводорода, очистку циклогексена, введение субстрата и газообразного реагента с определенной скоростью подачи в электролизер, в который предварительно приливают смесь органического растворитель с фоновым электролитом-перхлоратом н-тетрабутиламмония, погружение платиновых электродов и проведение электролиза при потенциале окисления сероводорода.

Предлагаемое изобретение поясняется следующим примером.

Пример. Получение циклогексантиола в ацетонитриле

Способ реализуется с помощью электролизера и потенциостата (IPC Pro 2000), обработка данных проводится при использовании IBM и специализированного пакета программ. Аналоговая компенсация омических потерь с помощью потенциостата предусмотрена в связи с проведением электрохимических измерений в неводных средах.

В бездиафрагменный электролизер, предназначенный для трехэлектродной электрохимической системы, с платиновыми рабочим и вспомогательным электродами, площадью поверхности S=700 мм2, заливали 30 мл циклогексена и 70 мл предварительно очищенного и тщательно осушенного ацетонитрила, добавляли навеску фонового электролита (3,5 г осушенного перхлората н-тетрабутиламмония). Электролизер снабжен барботером для ввода сероводорода.

Сероводород, полученный по традиционной методике нагреванием до 250°С смеси элементарной серы и парафина, подавали непрерывно в течение 2,5 ч со скоростью 60-70 ч-1 при интенсивном перемешивании. Реакционную смесь выдерживали в течение 3 ч при температуре 20-25°С.

Электролиз проводили при потенциале 1,8 В относительно электрода сравнения (хлорсеребряный в нас. растворе KCl с водонепроницаемой диафрагмой, необходимой в случае использования органических растворителей), контролируя силу тока. Потенциал электролиза соответствует значению, которое на 0,2 В превышает потенциал окисления реагента до катион-радикала в рассматриваемых условиях. После уменьшения тока до 0,2 мА снимали напряжение и сливали раствор.

Перхлорат н-тетрабутиламмония осаждали пентаном. Циклогексен отгоняли при температуре 82,98°С в смеси с растворителем - ацетонитрилом (tкип=81,6°C). Получали продукт - циклогексантиол с выходом 34,5% (8,3 г). Соединения идентифицированы путем сравнения со стандартными образцами при электрохимическом определении методом циклической вольтамперометрии, а также их структуру подтверждали методами газовой хроматографии и ИК-спектроскопии.

Для проведения процесса использовали ацетонитрил. Можно применять любой органический апротонный растворитель (например, хлористый метилен) с рабочим диапазоном потенциалов в анодной области от 0 до 2,0 В.

Способ позволяет упростить процесс получения циклогексантиола за счет электрохимической окислительной активации сероводорода без использования катализатора, сложного оборудования, без применения повышенных давлений и высоких температур.

Положительный эффект предлагаемого способа заключается в простоте проведения одностадийного процесса получения циклогексантиола по сравнению с прототипом, снижении температуры процесса до 20-25°С, отсутствие дорогостоящего катализатора и осуществлении стадий его подготовки и регенерации. Интенсификация процесса достигается за счет снижения энергетического барьера реакции циклогексена с сероводородом в условиях электрохимической активации реагента на платиновом аноде в органическом растворителе.

Источники информации

1. Патент US 2454409, 1948.

2. Патент US 3963785, 1976.

3. Патент US 3548008, 1970.

4. Патент US 3270063, 1966 (прототип).

Похожие патенты RU2550141C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОСИНТЕЗА ЦИКЛОГЕКСАНТИОЛА НА ОСНОВЕ СЕРОВОДОРОДА 2016
  • Берберова Надежда Титовна
  • Кудрявцев Даниил Александрович
  • Шинкарь Елена Владимировна
  • Смолянинов Иван Владимирович
RU2634732C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ 3,7-ДИАМИНОФЕНОТИАЗИНА 2011
  • Охлобыстина Александра Вячеславовна
  • Охлобыстин Андрей Олегович
  • Берберова Надежда Титовна
  • Шинкарь Елена Владимировна
RU2479674C1
СПОСОБ ПОЛУЧЕНИЯ ТИОФЕНА И 2-МЕРКАПТОТИОФЕНА В ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ 2007
  • Берберова Надежда Титовна
  • Хохлов Владислав Александрович
  • Шинкарь Елена Владимировна
  • Алехина Юлия Юрьевна
RU2340609C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЭЛЕМЕНТНОЙ СЕРЫ ИЗ СЕРОВОДОРОДА В ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ 2012
  • Берберова Надежда Титовна
  • Шинкарь Елена Владимировна
  • Смолянинов Иван Владимирович
  • Васильева Елена Андреевна
  • Кабылова Ролина Хаировна
RU2516480C2
ЭЛЕКТРОКАТАЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЭЛЕМЕНТНОЙ СЕРЫ ИЗ СЕРОВОДОРОДА 2012
  • Берберова Надежда Титовна
  • Шинкарь Елена Владимировна
  • Смолянинов Иван Владимирович
  • Охлобыстин Андрей Олегович
  • Колдаева Юлия Юрьевна
  • Васильева Елена Андреевна
  • Петрова Нина Владимировна
RU2498938C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ОРГАНИЧЕСКИХ ПОЛИСУЛЬФАНОВ 2015
  • Берберова Надежда Титовна
  • Шинкарь Елена Владимировна
  • Смолянинов Иван Владимирович
  • Швецова Анастасия Владимировна
  • Седики Дарья Берузовна
  • Кузьмин Владимир Вячеславович
RU2614151C2
КАТАЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ТИОФЕНА И 2-ТИОФЕНТИОЛА 2014
  • Берберова Надежда Титовна
  • Хохлов Владислав Александрович
  • Шинкарь Елена Владимировна
  • Колдаева Юлия Юрьевна
  • Летичевская Наталья Николаевна
RU2564675C1
СПОСОБ ПОЛУЧЕНИЯ СОЛИ 9-МЕЗИТИЛ-10-МЕТИЛАКРИДИНИЯ 2015
  • Чупахин Олег Николаевич
  • Чарушин Валерий Николаевич
  • Щепочкин Александр Владимирович
RU2582126C1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ПОЛИСУЛЬФАНОВ В ГАЗОВОЙ СЕРЕ 2006
  • Берберова Надежда Титовна
  • Шинкарь Елена Владимировна
  • Маняшин Алексей Олегович
  • Леонова Юлия Игоревна
RU2378644C2
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МЕРКАПТАНОВ В НЕВОДНЫХ СРЕДАХ 2002
  • Берберова Н.Т.
  • Белинский Б.И.
  • Тараканов Г.В.
  • Шинкарь Е.В.
  • Маняшин А.О.
  • Гиренко Е.Е.
RU2207559C1

Реферат патента 2015 года ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОГЕКСАНТИОЛА В ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ

Изобретение относится к электрохимическому способу получения циклогексантиола в органических растворителях. Способ включает взаимодействие циклогексена с сероводородом при атмосферном давлении, причем одностадийную реакцию циклогексена с сероводородом проводят в условиях электролиза при потенциале окисления сероводорода в органическом растворителе, в который помещают фоновый электролит, без использования катализатора или специфического реагента при температуре процесса 20-25°С. Использование настоящего способа позволяет получать целевой продукт с высокой селективностью и относительно большим выходом при атмосферном давлении без использования специфического катализатора. 1 пр.

Формула изобретения RU 2 550 141 C1

Электрохимический способ получения циклогексантиола в органических растворителях, включающий взаимодействие циклогексена с сероводородом при атмосферном давлении, отличающийся тем, что одностадийную реакцию циклогексена с сероводородом проводят в условиях электролиза при потенциале окисления сероводорода в органическом растворителе, в который помещают фоновый электролит, без использования катализатора или специфического реагента при температуре процесса 20-25°С.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550141C1

US 3270063 A, 30.08.1966
US 3548008 A, 15.12.1970
WO 9911610 A1, 11.03.1999
СПОСОБ ПОЛУЧЕНИЯ МЕРКАПТАНОВ 0
  • Иностранцы Дональд Джеймс Мартин Эдвард Дэвид Вейл Соединенные Штаты Америки Иностранна Фирма Стауффер Кемикал Компани Соединенные Штаты Америки
SU381219A1
Способ получения алкилмеркаптанов 1983
  • Эмманюэль Аррет
  • Альфред Мирассу
  • Клод Ландусси
  • Патрик Ож
SU1220569A3

RU 2 550 141 C1

Авторы

Берберова Надежда Титовна

Кудрявцев Даниил Александрович

Шинкарь Елена Владимировна

Арефьев Ярослав Борисович

Пащенко Константин Петрович

Даты

2015-05-10Публикация

2013-10-29Подача