Изобретение относится к способу изготовления листов из стали с мартенситной структурой, имеющих более высокую механическую прочность, чем можно было бы получить при простой обработке быстрым охлаждением с закалкой на мартенсит, и свойства механической прочности и удлинения, позволяющие применять их для изготовления деталей, поглощающих энергию, используемых в автотранспортных средствах.
В некоторых случаях применения ставится задача выполнения деталей из листа стали, имеющей сверхвысокую механическую прочность. Этот тип стали представляет особый интерес в автомобильной промышленности, где преследуют цель облегчения транспортных средств. Этого можно достичь, в частности, благодаря использованию деталей из сталей с очень высокими механическими характеристиками, имеющих мартенситную микроструктуру. Детали для предотвращения взлома, конструктивные детали или детали, участвующие в обеспечении безопасности автотранспортных средств, например, такие как поперечные балки бамперов, усиления дверей или средней подножки, рычаги колес, должны иметь такие характеристики. Предпочтительно их толщина меньше 3 миллиметров.
Ставится также задача получения листов с еще более высокой механической прочностью. Известно, что механическую прочность стали с мартенситной структурой можно повысить посредством добавления углерода. Однако такое более высокое содержание углерода понижает способность к сварке листов или деталей, изготовленных из таких листов, и увеличивает риск образования трещин, связанный с присутствием водорода.
В связи с этим необходимо разработать способ изготовления стальных листов, не имеющих вышеупомянутых недостатков листов, которые имели бы предел прочности на разрыв, более чем на 50 МПа превышающий предел прочности, который можно было бы получить посредством аустенизации с последующей простой закалкой стали на мартенсит. Авторы изобретения установили, что при значениях содержания углерода от 0,15 до 0,40 мас.% предел прочности при растяжении Rm стальных листов, изготовленных посредством полной аустенизации с последующей простой закалкой на мартенсит, практически зависит только от содержания углерода и связан с этим содержанием с очень высокой степенью точности выражением (1): Rm(мегапаскали)=3220(C)+908.
В этом выражении (С) обозначает содержание углерода в стали, выраженное в массовых процентах. Таким образом, при данном содержании углерода C в стали необходимо создать способ изготовления, обеспечивающий достижение предела прочности, превышающего на 50 МПа значение выражения (1), то есть предел прочности, превышающий 3220(C) + 958 МПа, для этой стали. При этом ставится задача создания способа изготовления листов, используемых напрямую, то есть не требующих обязательной обработки отпуском после закалки.
Эти листы можно сваривать при помощи обычных способов, и они могут не содержать дорогих добавок из легирующих элементов.
Настоящее изобретение призвано решить вышеупомянутые проблемы. В частности, его целью является получение листов с пределом упругости более 1300 МПа, с пределом прочности, выраженным в мегапаскалях, превышающим (3220(C)+958) МПа, и предпочтительно с общим удлинением более 3%.
В связи с этим объектом изобретения является способ изготовления листа из мартенситной стали с пределом упругости более 1300 МПа, содержащий последовательные стадии, осуществляемые в нижеследующем порядке, во время которых:
- поставляют полуфабрикат из стали, в состав которой входят, в мас.%: 0,15%≤C≤0,40%, 1,5%≤Mn≤3%, 0,005%≤Si≤2%, 0,005%≤Al≤0,1%, S≤0,05%, P≤0,1%, 0,025%≤Nb≤0,1% и необязательно: 0,01%≤Ti≤0,1%, 0%≤Cr≤4%, 0%≤Mo≤2%, 0,0005%≤B≤0,005%, 0,0005%≤Ca≤0,005%, остальное составляют железо и неизбежные примеси;
- полуфабрикат нагревают до температуры T1, составляющей от 1050° до 1250°C, затем
- производят черновую прокатку нагретого полуфабриката при температуре T2, составляющей от 1050° до 1150°C, с общим коэффициентом обжатия εa более 100%, чтобы получить лист с не полностью рекристаллизованной аустенитной структурой со средним размером зерна менее 40 микрометров, затем
- лист не полностью охлаждают до температуры T3, составляющей от 970° до Ar3+30°C, чтобы избежать превращения аустенита, со скоростью VR1, превышающей 2°C/с, затем
- производят горячую чистовую прокатку указанного не полностью охлажденного листа при указанной температуре T3 с общим коэффициентом обжатия εb более 50%, чтобы получить лист, затем
- лист охлаждают со скоростью VR2, превышающей критическую скорость закалки на мартенсит.
Согласно предпочтительному варианту, средний размер аустенитных зерен составляет меньше 5 микрометров.
Предпочтительно лист подвергают последующему отпуску при температуре T4, составляющей от 150° до 600°C, в течение времени от 5 до 30 минут.
Объектом изобретения является также лист из не отпущенной стали с пределом упругости более 1300 МПа, полученный способом согласно одному из вышеупомянутых вариантов, имеющий полностью мартенситную структуру со средним размером реек менее 1,2 микрометра, при этом средний коэффициент удлинения реек составляет от 2 до 5.
Объектом изобретения является также стальной лист, полученный при помощи способа с вышеуказанным отпуском, при этом сталь имеет полностью мартенситную структуру со средним размером реек менее 1,2 микрометра, и средний коэффициент удлинения реек составляет от 2 до 5.
Далее следует более подробное пояснение состава сталей, применяемых в рамках способа по изобретению.
Если содержание углерода в стали ниже 0,15 мас.%, прокаливаемость стали является недостаточной и невозможно получить полностью мартенситную структуру применяемым способом. Если это содержание превышает 0,40%, сварные швы, выполненные на этих листах или этих деталях, обладают недостаточной вязкостью. Оптимальное содержание углерода для применения заявленного способа составляет от 0,16 до 0,28%.
Марганец снижает температуру начала образования мартенсита и замедляет распад аустенита. Для достижения достаточного эффекта содержание марганца не должно быть ниже 1,5%. Кроме того, если содержание марганца превышает 3%, зоны сегрегации появляются в чрезмерном количестве, что отрицательно сказывается на реализации изобретения. Предпочтительный интервал составляет от 1,8 до 2,5% Mn.
Содержание кремния должно превышать 0,005%, чтобы он участвовал в раскислении стали в жидкой фазе. Содержание кремния не должно превышать 2 мас.% по причине образования поверхностных окислов, которые существенно снижают возможность нанесения покрытия в случае, если необходимо нанести покрытие на лист путем пропускания через металлическую ванну покрытия, в частности, при непрерывном цинковании.
Содержание алюминия в стали в соответствии с изобретением не должно быть ниже 0,005%, чтобы обеспечить достаточное раскисление стали в жидком состоянии. Если содержание алюминия превышает 0,1 мас.%, могут возникнуть проблемы литья. Может также происходить образование включений оксида алюминия в слишком большом количестве и слишком большого размера, что отрицательно влияет на вязкость.
Содержание серы и фосфора в стали ограничено значениями 0,05% и 0,1% соответственно, чтобы избежать снижения пластичности или вязкости деталей или листов, изготавливаемых в рамках изобретения.
Сталь содержит также ниобий в количестве от 0,025 до 0,1% и необязательно титан в количестве от 0,01 до 0,1%.
Эти добавки ниобия и, возможно, титана позволяют применять способ в соответствии с изобретением за счет задержки рекристаллизации аустенита при высокой температуре и позволяют получить достаточно малый размер зерна при высокой температуре.
Хром и молибден являются очень эффективными элементами для задержки превращения аустенита и могут быть использованы при необходимости для реализации изобретения. В результате применения этих элементов происходит разделение областей ферритно-перлитного и бейнитного превращения, при этом ферритно-перлитное превращение происходит при температурах, превышающих температуру бейнитного превращения. Эти области превращения имеют при этом вид двух «языков», хорошо различимых на диаграмме изотермического превращения (превращение-температура-время).
Содержание хрома должно быть ниже или равно 4%. Сверх этого предела его влияние на прокаливаемость является практически насыщенным: при этом дополнительная добавка является дорогой и не приводит к соответствующему положительному эффекту.
Вместе с тем содержание молибдена не должно превышать 2% по причине его высокой стоимости.
Сталь может также необязательно содержать бор. Действительно, значительная деформация аустенита может ускорить превращение в феррит при охлаждении, чего следует избегать. Добавление бора в количестве от 0,0005 до 0,005 мас.% позволяет застраховаться от преждевременного ферритного превращения.
Сталь может также необязательно содержать кальций в количестве от 0,0005 до 0,005%. В сочетании с кислородом и серой кальций позволяет избежать образования включений большого размера, которые отрицательно сказываются на пластичности изготавливаемых листов или деталей.
Остальное в составе стали составляет железо и неизбежные при ее варке примеси.
Стальные листы в соответствии с изобретением характеризуются полностью мартенситной структурой с очень мелкими рейками. Учитывая специальные термомеханический цикл и состав, средний размер мартенситных реек не достигает 1,2 микрометра, а их средний коэффициент удлинения составляет от 2 до 5. Эти микроструктурные характеристики определяют, например, путем наблюдения микроструктуры при помощи электронного сканирующего микроскопа, в котором используют прожектор сканирующего пучка с полевым эффектом (технология "МЕВ-FEG"), при увеличении более 1200x, и который объединяют с детектором EBSD ("Electron Backscatter Diffraction"). Считается, что две смежные рейки являются различимыми, если их разориентировка по углу превышает 5 градусов. Средний размер реек определяют известным методом секущих: средний размер пересекаемых реек оценивают при помощи линий, случайно располагаемых относительно микроструктуры. Измерение осуществляют, по меньшей мере, на 1000 рейках, чтобы получить репрезентативное среднее значение. Затем путем анализа изображений при помощи известных программных средств определяют морфологию отдельных реек: определяют максимальный Lmax и минимальный Lmin размер каждой мартенситной рейки и коэффициент ее удлинения
Способ изготовления горячекатаных листов в соответствии с изобретением содержит следующие стадии:
Сначала создают полуфабрикат из стали, имеющей вышеуказанный состав. Этот полуфабрикат может находиться в виде сляба, полученного в результате непрерывного литья, тонкого сляба или слитка. Например, непрерывнолитой сляб имеет толщину около 200 мм, тонкий сляб имеет толщину порядка 50-80 мм. Этот полуфабрикат нагревают до температуры Т1, составляющей от 1050°C до 1250°C. Температура T1 превышает Ac3, температуру полного превращения в аустенит при нагреве. Таким образом, этот нагрев позволяет осуществить полную аустенизацию стали, а также растворение возможных карбонитридов ниобия, присутствующих в полуфабрикате. Эта стадия нагрева позволяет также осуществлять различные последующие операции горячей прокатки. Осуществляют так называемую черновую прокатку. Эту черновую прокатку проводят при температуре T2, составляющей от 1050°C до 1150°C. Общий коэффициент обжатия на различных этапах черновой прокатки обозначен εa. Если eia обозначает толщину полуфабриката перед горячей черновой прокаткой, a efa - толщину листа после прокатки, то общий коэффициент обжатия определяют как
Затем производят не полное охлаждение, то есть охлаждение до промежуточной температуры T3, листа со скоростью VR1, превышающей 2°C/с, чтобы избежать превращения и возможной рекристаллизации аустенита, затем производят горячую чистовую прокатку листа с общим коэффициентом обжатия εb, превышающим 50%. Если обозначить εi2 толщину листа перед чистовой прокаткой и ef2 толщину листа после этой прокатки, то общий коэффициент обжатия определяют как
Несмотря на то что вышеуказанный способ был описан для листового проката, то есть для плоских изделий из слябов, изобретение не ограничивается этой геометрией и этим типом изделий и может быть также адаптировано для изготовления длинных изделий, прутков, профилей посредством последовательных стадий горячей деформации.
Стальные листы можно использовать как таковые или можно подвергнуть отпуску, осуществляемому при температуре Т4, составляющей от 150°C до 600°C в течение времени от 5 до 30 минут. Эта отработка отпуском позволяет повысить пластичность за счет снижения предела упругости и прочности. Вместе с тем авторы изобретения установили, что способ, который придает предел прочности на разрыв как минимум на 50 МПа выше, чем после обычной закалки, сохранял это преимущество даже после отпуска при температурах от 150 до 600°C. При этой обработке отпуском характеристики мелкозернистости микроструктуры сохраняются.
Следующие результаты, представленные в качестве не ограничительных примеров, показывают предпочтительные характеристики, обеспечиваемые изобретением.
Пример
Были поставлены стальные полуфабрикаты следующего состава, выраженного в массовых процентах (%):
Полуфабрикаты толщиной 31 мм были нагреты и выдержаны 30 минут при температуре T1 1250°C, затем прокатаны в 4 прохода при температуре T2 1100°C с общим коэффициентом обжатия ε1 164%, то есть до толщины 6 мм. На этой стадии при высокой температуре после черновой прокатки структура является полностью аустенитной и не полностью рекристаллизованной со средним размером зерна 30 микрометров. Полученные таким образом листы были затем охлаждены со скоростью 3°C/с до температуры T3, составляющей от 955°C до 840°C, причем эта последняя температура равна Ar3+60°C. Листы были прокатаны в этом температурном интервале в 5 проходов с общим коэффициентом обжатия εb 76%, то есть до толщины 2,8 мм, затем охлаждены до окружающей температуры со скоростью 80°C/с, чтобы получить полностью мартенситную микроструктуру.
Для сравнения листы стали вышеуказанного состава были нагреты до температуры 1250°C, выдержаны 30 минут при этой температуре, затем охлаждены водой, чтобы получить полностью мартенситную микроструктуру (базовое условие).
Посредством испытаний на растяжение определили предел упругости Re, предел прочности на разрыв Rm и общее удлинение A листов, полученных при помощи этих различных вариантов изготовления. Было также использовано оценочное значение прочности после простой закалки на мартенсит (3220(C)+908 (МПа), а также разность между оценочным значением и реально измеренной прочностью.
Условия испытаний и полученные результаты
Сталь B не содержит достаточно ниобия: предела упругости 1300 МПа не достигают как после простой закалки на мартенсит (испытание B2), так и в случае черновой и чистовой прокатки при температура T3 (испытание B1).
В случае испытания B2 (простая закалка на мартенсит) отмечено, что значение оценочной прочности (1545 МПа) из выражения (1) близко к значению, полученному экспериментальным путем (1576 МПа).
Было также произведено наблюдение микроструктуры полученных листов при помощи электронного сканирующего микроскопа с применением прожектора считывающего пучка с полевым эффектом (технология "MEB-FEG") и детектора EBSD, и был определен средний размер реек мартенситной структуры, а также средний коэффициент удлинения
При испытаниях A1 и A2 заявленный способ позволяет получить мартенситную структуру со средним размером реек 0,9 микрометра и с коэффициентом удлинения 3. Эта структура является намного более мелкой, чем структура, наблюдаемая после простой закалки на мартенсит, в которой средний размер реек составляет около 2 микрометров.
При испытаниях A1 и A2 в соответствии с изобретением значения ΔRm равны 63 МПа и 172 МПа соответственно. Таким образом, способ в соответствии с изобретением позволяет получать значения механической прочности значительно выше значений, получаемых при простой закалке на мартенсит. В случае испытания A2, например, это увеличение прочности (172 МПа) эквивалентно увеличению, которое можно было бы получить согласно отношению (1) при помощи простой закалки на мартенсит, применяемой для сталей, в которые была введена дополнительная добавка углерода в количестве примерно 0,05%. Однако такое увеличение содержания углерода могло бы иметь отрицательные последствия с точки зрения способности к сварке и вязкости, тогда как заявленный способ позволяет повысить механическую прочность без этих недостатков.
Листы, изготовленные в соответствии с изобретением, учитывая низкое содержание углерода, обладают хорошей способностью к точечной контактной сварке. Они показывают также хорошую способность к нанесению покрытий, например, посредством цинкования или алюминирования непрерывным погружным методом.
Таким образом, изобретение обеспечивает изготовление листов с покрытием или без него с высокими механическими характеристиками при очень удовлетворительных экономических условиях.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗ СВЕРХПРОЧНОЙ МАРТЕНСИТНОЙ СТАЛИ И ПОЛУЧЕННЫЕ ТАКИМ ОБРАЗОМ ЛИСТ ИЛИ ДЕТАЛЬ | 2012 |
|
RU2580578C2 |
ВЫСОКОПРОЧНАЯ СТАЛЬ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2016 |
|
RU2689826C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО СТАЛЬНОГО ИЗДЕЛИЯ И СТАЛЬНОЕ ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ТАКИМ ОБРАЗОМ | 2015 |
|
RU2688092C2 |
СТАЛЬ ДЛЯ ЗАКАЛКИ В ШТАМПЕ И ЗАКАЛЕННАЯ В ШТАМПЕ ДЕТАЛЬ, ИЗГОТОВЛЕННАЯ ИЗ ТАКОЙ СТАЛИ | 2016 |
|
RU2686728C1 |
ХОЛОДНОКАТАНЫЙ И ОТОЖЖЁННЫЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ИЗГОТОВЛЕНИЯ | 2019 |
|
RU2803955C1 |
ХОЛОДНОКАТАНЫЙ И ТЕРМООБРАБОТАННЫЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2019 |
|
RU2775990C1 |
ВЫСОКОПРОЧНАЯ СТАЛЬ И СПОСОБ ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2669487C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ ХОЛОДНОКАТAНЫХ И ОТОЖЖЕННЫХ СТАЛЬНЫХ ЛИСТОВ И ЛИСТЫ, ПОЛУЧЕННЫЕ ЭТИМ СПОСОБОМ | 2008 |
|
RU2437945C2 |
ХОЛОДНОКАТАНЫЙ И ОТОЖЖЕННЫЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2018 |
|
RU2736374C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ ГОРЯЧЕКАТАНОГО СТАЛЬНОГО ЛИСТА ГОРЯЧЕЙ ШТАМПОВКОЙ | 2016 |
|
RU2630082C1 |
Изобретение относится к области металлургии. Для повышения механической прочности и обеспечения предела упругости более 1300 МПа полуфабрикат из стали содержит, мас.%: 0,15≤C≤0,40, 1,5≤Mn≤3, 0,005≤Si≤2, 0,005≤Al≤0,1, S≤0,05, P≤0,1, 0,025≤Nb≤0,1 и необязательно: 0,01≤Ti≤0,1, 0≤Сr≤4, 0≤Мо≤2, 0,0005≤В≤0,005, 0,0005≤Ca≤0,005, остальное железо и неизбежные примеси нагревают до температуры T1, составляющей от 1050° до 1250°C, затем производят черновую прокатку при температуре T2, составляющей от 1050° до 1150°C, с общим коэффициентом обжатия εa более 100% с получением листа с не полностью рекристаллизованной аустенитной структурой со средним размером зерна менее 40 микрометров. Лист охлаждают до температуры T3, составляющей от 970° до Ar3+30°C, со скоростью VR1, превышающей 2°C/с, затем производят горячую чистовую прокатку указанного охлажденного листа при температуре T3 с общим коэффициентом обжатия εb более 50% для получения листа, затем лист охлаждают со скоростью VR2, превышающей критическую скорость закалки на мартенсит. 3 н. и 2 з.п. ф-лы, 1 пр.
1. Способ изготовления листа из мартенситной стали с пределом упругости более 1300 МПа, содержащий последовательные стадии:
получение полуфабриката, выполненного из стали, содержащей, мас.%:
0,15≤C≤0,40
1,5≤Mn≤3
0,005≤Si≤2
0,005≤Al≤0,1
S≤0,05
P≤0,1
0,025≤Nb≤0,1
и необязательно:
0,01≤Ti≤0,1
0≤Cr≤4
0≤Mo≤2
0,0005≤В≤0,005
0,0005≤Ca≤0,005,
остальное железо
и неизбежные примеси,
нагрев полуфабриката до температуры T1, составляющей от 1050° до 1250°C,
черновую прокатку нагретого полуфабриката при температуре T2, составляющей от 1050° до 1150°C, с общим коэффициентом обжатия εa более 100%, обеспечивающей получение листа с не полностью рекристаллизованной аустенитной структурой и со средним размером зерна менее 40 микрометров,
охлаждение указанного листа до температуры T3, составляющей от 970° до Ar3+30°C, со скоростью VR1, превышающей 2°C/с,
горячую чистовую прокатку охлажденного до указанной температуры T3 листа с общим коэффициентом обжатия εb более 50% с получением листа и затем
охлаждение полученного листа со скоростью VR2, превышающей критическую скорость закалки на мартенсит.
2. Способ по п.1, отличающийся тем, что средний размер аустенитных зерен в листе составляет меньше 5 микрометров.
3. Способ по любому из пп.1 или 2, отличающийся тем, что полученный лист подвергают последующему отпуску при температуре T4, составляющей от 150° до 600°C, в течение времени от 5 до 30 минут.
4. Лист из мартенситной стали с пределом упругости более 1300 МПа, полученный способом по любому из пп.1 или 2, имеющий полностью мартенситную структуру со средним размером реек менее 1,2 микрометра, при этом средний коэффициент удлинения реек составляет от 2 до 5.
5. Лист из мартенситной стали, полученный способом по п.3, имеющий полностью мартенситную структуру со средним размером реек менее 1,2 микрометра, при этом средний коэффициент удлинения реек составляет от 2 до 5.
ГОРЯЧЕКАТАНАЯ ВЫСОКОПРОЧНАЯ СТАЛЬ И СПОСОБ ПОЛУЧЕНИЯ ЛЕНТЫ ИЗ ГОРЯЧЕКАТАНОЙ ВЫСОКОПРОЧНОЙ СТАЛИ | 2004 |
|
RU2333284C2 |
СПОСОБ ПОЛУЧЕНИЯ ЛИСТА СТАЛИ, ИМЕЮЩЕЙ ДВУХФАЗНУЮ СТРУКТУРУ | 2003 |
|
RU2294385C2 |
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОГО ЛИСТА С ОЧЕНЬ ВЫСОКИМИ ХАРАКТЕРИСТИКАМИ ПРОЧНОСТИ НА РАЗРЫВ, ПЛАСТИЧНОСТИ И УДАРНОЙ ПРОЧНОСТИ И ИЗГОТОВЛЕННЫЙ ПО СПОСОБУ ЛИСТ | 2007 |
|
RU2397268C2 |
US 201002300116 A1, 16.09.2010 | |||
ЗАКАЛЕННАЯ МАРТЕНСИТНАЯ СТАЛЬ, СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ И ПОЛУЧАЕМАЯ ТАКИМ СПОСОБОМ ДЕТАЛЬ | 2006 |
|
RU2400557C2 |
Авторы
Даты
2015-05-10—Публикация
2012-04-20—Подача