СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА Российский патент 2015 года по МПК B22F3/20 B22F3/18 C22C33/02 

Описание патента на изобретение RU2560484C1

Настоящее изобретение относится к области порошковой металлургии, а именно к технологиям получения высокотемпературных композиционных материалов на основе железа, которые могут быть использованы для изготовления неохлаждаемых деталей и узлов турбин авиационно-космической техники, работающей при температурах до 1350°С.

Дальнейшее повышение мощности, к.п.д, экологичности и экономичности современных газовых турбин, используемых в качестве авиационных двигателей, энергетических установок и газоперекачивающих агрегатов, возможно за счет повышения температуры рабочего газа на входе в турбину. Повышение рабочих температур до 1350°С исключает возможность использования современных сложнолегированных жаропрочных сплавов на основе никеля, не обладающих достаточной жаропрочностью и окалиностойкостью при указанных температурах. Наиболее перспективными материалами, устойчивыми в данных условиях, являются композиты с железной матрицей, упрочненные дисперсными частицами тугоплавких оксидов. К преимуществам таких материалов относятся меньшая плотность по сравнению с традиционно применяемыми жаропрочными сплавами, более высокая жаростойкость и температура плавления. Элементы камеры сгорания из подобного композиционного материала могут длительно работать при температурах выше на 100-150°С, чем аналогичные детали, выполненные из никелевых жаропрочных суперсплавов.

Известен литейный метод производства дисперсно-упрочненного сплава, включающий сушку нанопорошка оксида, плавление матричного металла, перемешивание порошка с матричным металлом, разливку полученного расплава в формы и их быстрое охлаждение (JP 2008189995 А, 21.08.2008).

Недостатком данного способа является трудность обеспечения равномерно распределенной оксидной фазы в объеме материала в процессе плавки и охлаждения сплава.

Также известен способ производства дисперсно-упрочненного сплава, включающий смешивание сплава с влажными солями иттрия, сушку полученной смеси, вакуумную термическую обработку для выделения оксида иттрия и компактирование полученных полуфабрикатов (KR 100960624 В1, 07.06.2010).

Недостатком указанного способа является трудоемкость процесса, обусловленная использованием влажных солей с последующей прокалкой сплава.

Известен способ получения ферритной стали, армированной дисперсными частицами оксида и имеющей следующий химический состав, масс.%: углерод - 0,05-0,25, хром - 8,0-12,0, вольфрам - 0,1-4,0, титан - 0,1-1,0, оксид иттрия - 0,1-0,5, остальное - железо. Способ включает смешивание элементарных порошков с порошком оксида иттрия, их механическое легирование, горячую экструзию полученной смеси при температуре 1150°С и термообработку (ЕР 1528113 А1, 04.05.2005).

Данный материал предназначен для применения в ядерной энергетике (трубопроводы охлаждающих систем) и не способен функционировать в условиях высокотемпературной газовой коррозии в процессе работы ГТД.

Наиболее близким аналогом является способ изготовления дисперсно-упрочненного композиционного материала на основе железа следующего состава, масс.%: Сr - 20, Аl - 4,5, Ti - 0,5, Y2O3 - 0,5, Fe - остальное. Метод включает механическое легирование в шаровой мельнице в защитной атмосфере аргона, дегазацию порошка сплава в капсулах в течение 1-3 дней, компактирование сплава методом горячего изостатического прессования при давлении 103 МПа и температуре 1010°С, горячую прокатку при температуре 927-1093°С и холодную прокатку при температуре 65°-93°С (US 5032190 А, 16.07.1991).

Недостатком данного способа является использование дорогостоящей операции горячего изостатического прессования, а также длительность подготовительного процесса дегазации перед прессованием.

Предложенный способ позволяет устранить данные недостатки.

Задачей предложенного изобретения является разработка способа получения легкого и прочного композиционного материала на основе железа, обладающего качественной равномерной структурой, а также упрощение данного способа.

Техническим результатом заявленного изобретения является получение композиционного материала на основе железа с практической плотностью, равной не менее 96% от теоретической и не более 7,3 г/см3, с пористостью не более 4%, с повышенной прочностью для указанной выше практической плотности, а также с направленной структурой, характеризующейся значениями коэффициента неравноосности зерен от 30 до 40.

Технический результат достигается в предложенном способе получения композиционного материала на основе железа, включающем перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава, при этом порошки перемешивают с получением смеси, содержащей: 18-21 мас.% хрома, 4,5-5,5 мас.% алюминия, 0,4-0,6 мас.% титана, объемное содержание оксида металла - 1-3%, железо - остальное, механическое легирование проводят в высокоэнергетической установке для размола и смешивания в течение 40-60 часов, компактирование проводят методом горячей экструзии при температуре 1100-1250°C с коэффициентом вытяжки 11-16, полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C с коэффициентом деформации 15-20% за один проход.

В качестве порошков для приготовления матрицы материала лучше использовать порошок лигатуры железо-алюминий-титан, порошок хрома и порошок железа.

Порошок лигатуры железо-алюминий-титан лучше предварительно измельчить вместе с дисперсным порошком оксида металла.

В качестве дисперсного порошка оксида металла лучше использовать наноразмерный порошок оксида иттрия.

Вначале перемешивают исходную порошковую смесь компонентов, рассчитанную для получения материала следующего состава: Сr - 18-21 мас.%, Аl - 4,5-5,5 мас.%, Ti - 0,4-0,6 мас.%, объемное содержание оксида металла - 1-3%, Fe - остальное.

Поскольку алюминий и титан имеют высокую реакционную активность и быстро окисляются кислородом воздуха, их лучше вводить в смесь на стадии механического легирования в виде порошка лигатуры железо-алюминий-титан.

В качестве дисперсного порошка оксида металла можно использовать, например, порошки Al2O3, ZrO2, НfO2, однако предпочтительно использовать наноразмерный порошок Y2O3. Оксид иттрия обладает высокой термодинамической устойчивость и не взаимодействует с матрицей получаемого материала.

Дисперсный порошок оксида металла рекомендуется добавлять во время предварительного измельчения лигатуры Fe-Al-Ti для обеспечения равномерности распределения армирующей фазы и уменьшения времени последующего механического легирования.

После перемешивания порошков и оксида металла проводят механическое легирование смеси в высокоэнергетической установке для размола и смешивания (аттриторе) с защитной атмосферой инертного газа. Высокоэнергетический помол обеспечивает механическое активирование порошка матричного материала, а также позволяет производить перемешивание одновременно с помолом, во время которого происходит механическая активация смеси, увеличивается контакт между частицами порошка, уменьшается пористость, происходит деформация или разрушение отдельных частиц порошка.

Оптимальное время механического легирования, при котором происходит необходимое измельчение и перемешивание компонентов сплава, составляет 40-60 часов.

Готовый порошок экструдируют с коэффициентом вытяжки 11-16 при температуре 1100-1250°С для обеспечения направленной структуры сплава.

Анализ структуры с помощью растрового электронного микроскопа показал, что после экструзии в указанных режимах частицы оксидов металлов равномерно распределены в объеме материала, структура на поперечном шлифе - равноосная, на продольном - направленная. Однако в образцах наблюдалось наличие пор и рыхлот.

С целью усовершенствования структуры полученные прутки прокатывают вдоль направления экструзии при температуре 950-1150°С и коэффициенте деформации 15-20% за один проход. Наилучший результат по структуре материала наблюдается при его прокатке до толщины 3-9 мм, что можно осуществить за три и более прохода прокатки.

Пример 1.

Получали композиционный материал на основе Fe, армированный дисперсными частицами оксида иттрия.

Проводили смешивание порошков до получения смеси следующего состава: Сr - 19,5 масс.%, Аl - 4,6 масс.%, Ti - 0,47 масс.%, объемное содержание Y2O3 - 1,3%, Fe - остальное. Полученную порошковую смесь подвергали механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 40 часов, защитная атмосфера - аргон. Готовый порошок сплава экструдировали при температуре 1100°С с коэффициентом вытяжки 11. Полученные прутки сплава прокатывали в листы толщиной 8 мм вдоль направления экструзии при температуре 1100°С.

Полученный материал имел практическую плотность 7,28 г/см3, равную 98% от теоретической.

Прочность на разрыв материала вдоль направления экструзии при Τ=25°С составил σΒ=745 МПа.

Объемная пористость составила 2%.

Пример 2.

Получали композиционный материал на основе Fe, армированный дисперсными частицами оксида иттрия.

Проводили смешивание порошков до получения смеси следующего состава: Сr - 19,5 масс.%, Аl - 4,6 масс.%, Ti - 0,47 масс.%, объемное содержание Y2O3 - 2,8%, Fe - остальное. Полученную порошковую смесь подвергали механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 40 часов, защитная атмосфера - аргон. Готовый порошок сплава экструдировали при температуре 1100°C с коэффициентом вытяжки 16. Полученные прутки сплава прокатывали в листы толщиной 3 мм вдоль направления экструзии при температуре 1100°С.

Полученный материал имел практическую плотность 7,26 г/см3, равную 99% от теоретической.

Прочность на разрыв материала вдоль направления экструзии при Τ=25°С составил σΒ=720 МПа.

Объемная пористость составила 1%.

Пример 3.

Получали композиционный материал на основе Fe, армированный дисперсными частицами оксида гафния.

Проводили смешивание порошков до получения смеси следующего состава: Сr - 18 мас.%, Аl - 5,5 мас.%, Ti - 0,6 мас.%, объемное содержание НfO2 - 3%, Fe - остальное. Полученную порошковую смесь подвергали механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 60 часов, защитная атмосфера - аргон. Готовый порошок сплава экструдировали при температуре 1200°C с коэффициентом вытяжки 14. Полученные прутки сплава прокатывали в листы толщиной 8 мм вдоль направления экструзии при температуре 970°С.

Полученный материал имел практическую плотность 7,25 г/см3, равную 98% от теоретической.

Прочность на разрыв материала вдоль направления экструзии при Τ=25°С составил σΒ=700 МПа.

Объемная пористость составила 2%.

Анализ микроструктуры образцов после прокатки показал направленную структуру зерен с равномерным распределением оксидной фазы вдоль их границ. Расположение зерен характеризовалось большой степенью коэффициента их неравноосности от 30 до 40.

Стабилизатором данной структуры служили закрепленные на стыках субграниц упрочняющие наноразмерные частицы тугоплавких оксидов.

Таким образом, предложенный способ позволяет добиться высоких показателей прочности композиционного материала на основе железа с низкой плотностью, равной не менее 96% от теоретической и не более 7,3 г/см3, с пористостью не более 4% и с направленной структурой, характеризующейся большими значениями неравноосности зерен.

Похожие патенты RU2560484C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ НИКЕЛЯ 2014
  • Каблов Евгений Николаевич
  • Гращенков Денис Вячеславович
  • Ефимочкин Иван Юрьевич
  • Родионов Антон Игоревич
  • Черепанин Роман Николаевич
  • Базылева Ольга Анатольевна
  • Туренко Елена Юрьевна
RU2563084C1
МЕТАЛЛОКЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДНОЙ МАТРИЦЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2018
  • Каблов Евгений Николаевич
  • Гращенков Денис Вячеславович
  • Базылева Ольга Анатольевна
  • Аргинбаева Эльвира Гайсаевна
  • Купцов Роман Сергеевич
  • Ефимочкин Иван Юрьевич
RU2686831C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ 1993
  • Николаев А.Г.
  • Левашов Е.А.
  • Поварова К.Б.
  • Черняков С.В.
  • Егорычев К.Н.
RU2032496C1
ЖАРОПРОЧНЫЙ КОМПОЗИЦИОННЫЙ ПОРОШКОВЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Поварова Кира Борисовна
  • Дроздов Андрей Александрович
  • Скачков Олег Александрович
  • Пожаров Сергей Владимирович
  • Морозов Алексей Евгеньевич
RU2371496C1
Способ химико-термической обработки металлических порошков для производства сталей и жаропрочных сплавов, упрочненных дисперсными оксидами 2019
  • Векслер Михаил Юрьевич
  • Векслер Юрий Генрихович
  • Попов Артемий Александрович
  • Шикин Александр Владимирович
RU2780653C2
СПОСОБ ПОЛУЧЕНИЯ УПРОЧНЯЕМОГО ОКСИДАМИ НАНОПОРОШКОВ МЕТАЛЛОВ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА 2018
  • Лёвин Борис Алексеевич
  • Пашинин Валерий Алексеевич
  • Недорчук Борис Лаврентьевич
  • Блинов Сергей Валентинович
RU2707686C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛИ С УПРОЧНЯЮЩИМИ НАНОЧАСТИЦАМИ 2011
  • Родин Виктор Никифорович
  • Сафронов Борис Владимирович
  • Чуканов Андрей Павлович
  • Агеев Валерий Семенович
  • Никитина Анастасия Андреевна
  • Глаговский Эдуард Михайлович
  • Неворотин Вадим Кириллович
RU2493282C2
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСНО-УПРОЧНЕННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ МЕДИ 1997
  • Куимов С.Д.
  • Иванов В.А.
  • Федотов Н.А.
  • Коноплев В.Н.
RU2117062C1
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА С ДИСПЕРСНЫМИ ОКСИДАМИ 2005
  • Содзи Тору
  • Танака Сейитиро
  • Такеиси Сейдзи
  • Сегава Хидео
RU2333269C2
Дисперсно-упрочненный композиционный материал на основе меди 2020
  • Королев Алексей Анатольевич
  • Крестьянинов Александр Тимофеевич
  • Тимофеев Константин Леонидович
  • Казанский Владимир Сергеевич
  • Гупало Владимир Алексеевич
  • Зверев Сергей Владимирович
RU2740677C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА

Настоящее изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе железа включает перемешивание порошков для матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава. Порошки перемешивают с получением смеси, содержащей оксида металла при его объемном содержании 1-3%, 18-21 мас.% хрома, 4,5-5,5 мас.% алюминия, 0,4-0,6 мас.% титана и железо - остальное. Механическое легирование проводят в высокоэнергетической установке для размола и смешивания в течение 40-60 часов. Компактирование проводят методом горячей экструзии при температуре 1100-1250°C с коэффициентом вытяжки 11-16. Полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C с коэффициентом деформации 15-20% за один проход. Обеспечивается получение композиционного материала с практической плотностью, равной не менее 96% от теоретической и не более 7,3 г/см3, с пористостью не более 4%, с повышенной прочностью и с направленной структурой, характеризующейся значениями коэффициента неравноосности зерен от 30 до 40. 3 з.п. ф-лы, 3 пр.

Формула изобретения RU 2 560 484 C1

1. Способ получения композиционного материала на основе железа, включающий перемешивание порошков для матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава, отличающийся тем, что порошки перемешивают с получением смеси, содержащей оксид металла с его объемным содержанием 1-3%, 18-21 мас. % хрома, 4,5-5,5 мас. % алюминия, 0,4-0,6 мас. % титана, железо - остальное, механическое легирование проводят в высокоэнергетической установке для размола и смешивания в течение 40-60 часов, компактирование проводят методом горячей экструзии при температуре 1100-1250°C с коэффициентом вытяжки 11-16, полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C с коэффициентом деформации 15-20% за один проход.

2. Способ по п. 1, отличающийся тем, что в качестве порошков для матрицы материала используют порошок лигатуры железо-алюминий-титан, порошок хрома и порошок железа.

3. Способ по п. 2, отличающийся тем, что порошок лигатуры железо-алюминий-титан предварительно измельчают вместе с дисперсным порошком оксида металла.

4. Способ по п. 1, отличающийся тем, что в качестве дисперсного порошка оксида металла используют наноразмерный порошок оксида иттрия.

Документы, цитированные в отчете о поиске Патент 2015 года RU2560484C1

US 5032190 A, 16.07.1991
EP 1528113 A1, 04.05.2005
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА 2004
  • Каблов Е.Н.
  • Абузин Ю.А.
  • Власенко С.Я.
  • Гончаров И.Е.
  • Наймушин А.И.
RU2246379C1
RU 2000122842 A, 27.10.2002

RU 2 560 484 C1

Авторы

Каблов Евгений Николаевич

Гращенков Денис Вячеславович

Ефимочкин Иван Юрьевич

Черепанин Роман Николаевич

Родионов Антон Игоревич

Даты

2015-08-20Публикация

2014-11-14Подача