РЕАКЦИОННАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ УЗКОПОЛОСНОГО ЛЮМИНОФОРА СИНЕГО СВЕЧЕНИЯ Российский патент 2015 года по МПК C09K11/78 C09K11/80 

Описание патента на изобретение RU2562268C1

Изобретение относится к области получения сложных оксидных материалов, в частности к получению алюминатных люминофоров различного химического состава, активированных ионами редкоземельных металлов (РЗМ), и может быть использовано при производстве материалов для источников и преобразователей света.

Известен способ получения сложного алюмината бария-магния, активированного ионами европия, основанный на осуществлении реакции горения порошковой смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) в проточном реакторе с использованием в качестве горючего металлического магния и/или алюминия, а в качестве окислителей - пероксида бария и атмосферного кислорода. Кроме того, в реакционную смесь вводились в качестве разбавителей оксиды соответствующих металлов (Al2O3 и MgO), а в качестве плавня - фторид алюминия (AlF3) в количестве 2,5 мас. %. Активатор - европий вводили в систему в виде оксида европия (III) (Казарбина Т.В., Мишенина Л.Н., Некрасов Е.А. Макрокинетика фазообразования алюминатных люминофоров в режиме горения. - Журнал прикладной химии, 1997, т. 70, №3, с. 381- 385).

К недостаткам указанного способа относится необходимость использования специальной аппаратуры (проточного реактора), обеспечения тока кислорода в процессе синтеза, а также введение в систему дополнительно в виде сверхстехиометрической добавки плавня - фторида алюминия (AlF3). Все эти факторы приводят к существенному усложнению и удорожанию процесса.

Известен способ получения люминофоров - сложных алюминатов, активированных ионами европия методом СВС, путем взаимодействия компонентов шихты, взятых в следующих соотношениях (RU 2455336, МПК С09К 11/78, С09К 11/80, опубл. 10.07.2012):

пероксид щелочноземельного металла (пероксид стронция) 11,67-67,07 оксид алюминия 20,59-63,63 оксид магния 0,00-9,55 металлический алюминий 10,90-17,75 оксид редкоземельного металла (оксид европия (III)) 1,36-2,98 добавка сверхстехиометрического количества перхлората натрия 15,55-23,07

К недостаткам известного способа относится присутствие в процессе СВС фазы MgAl2O4, что свидетельствует о существовании определенных дефектов в кристаллической структуре образующегося целевого алюмината Me0,9Eu0,1MgAl10O17. Доказательством может служить рентгенофазовый анализ люминофора, полученный данным способом со структурой Sr0,9Eu0,1MgAl10O17, который показал наличие следующих фаз:

1) Sr0,9Eu0,1MgAl10O17

2) MgAl2O4

3) Al2O3

4) низкомолекулярные продукты синтеза

Технический результат заключается в улучшении светотехнических параметров, а именно интенсивности свечения алюминатного люминофора, а также в удешевлении его получения в режиме СВС.

Сущность изобретения заключается в том, что реакционная смесь для получения узкополосного люминофора синего свечения включает пероксид стронция, оксид алюминия, оксид магния, металлический алюминий, оксид европия (III) и добавку перхлорат натрия. Дополнительно реакционная смесь содержит оксид кальция, при следующем соотношении компонентов, мас. %:

пероксид стронция 7,53-11,17 оксид кальция 1,76-3,51 оксид европия (III) 2,35-2,36 оксид магния 5,56-5,64 оксид алюминия 42,95-43,41 металлический алюминий 14,54-14,68 перхлорат натрия 21,67-22,87

Введение в состав реакционной смеси для получения узкополосного люминофора оксида кальция, который в процессе синтеза встраивается в решетку кристаллофора, в вакантные кристаллографические позиции Mg, способствует созданию более совершенного кристалла, все атомы которого совершают колебания вокруг средних положений, совпадающих с узлами решетки, все межатомные силы локально уравновешены, свободная энергия Гиббса минимальна.

Способ осуществляют следующим образом. Процесс осуществляют путем взаимодействия компонентов реакционной смеси, которую получают перемешиванием в течение 20 минут порошка пероксида стронция, оксида кальция, оксида европия (III), оксида магния, оксида алюминия, металлического алюминия и добавки перхлората натрия, для кислородного баланса реакции. Компоненты реакционной смеси брались в соответствии с табл. 1 (составы 1-3). Полученную гомогенизированную смесь помещают в кварцевый реактор. Процесс СВС инициировали горением затравки вспомогательного состава (смесь BaO2-Al в соотношении 3:1, соответственно). После прохождения в объеме реакционной смеси устойчивого фронта волны горения образовывался спеченный пористый продукт светлого цвета. Полученный продукт естественным образом охлаждали на воздухе. Общее время синтеза с остыванием составляет ~10 мин. Полученный спек размалывали до состояния мелкодисперсного 4

порошка и обрабатывался 5%-ным раствором HCl, затем продукт выделяют декантацией, промывают дистиллированной водой до нейтральной среды промывных вод и высушивают при 80°C. Выход люминофора составил более 60%. У образцов с содержанием оксида кальция не более 3,51 мас. % интенсивность свечения синтезированного сложного алюмината по сравнению с прототипом увеличилась на 10%, тогда как дальнейшее увеличение содержания оксида кальция вело к ухудшению данной светотехнической характеристики (табл. 1, состав 3).

Пример 1. Готовили стехиометрическую смесь, рассчитанную на получение стронций- магниевого алюмината, активированного ионами европия, общей формулы Для приготовления смеси в количестве 20 г использовали следующие порошки: пероксид стронция (SrO2) - 1,95 г; оксид кальция (СаО) - 0,91 г; оксид магния (MgO) - 1,457 г; оксид алюминия (Al2O3) - 11,24 г; алюминия - 3,8 г и оксида европия (Eu2O3) - 0,61 г. В качестве добавки для кислородного баланса процесса в реакционную систему вводили порошок твердого окислителя - перхлората натрия (NaClO4) - 5,92 г.

Осуществляли механическое перемешивание порошков в планетарной мельнице, что обеспечивало предварительную механическую активацию и гомогенизацию исходных компонентов в течение 20 минут. Полученную гомогенизированную смесь помещали в кварцевый реактор. Процесс СВС инициировали горением затравки вспомогательного состава (смесь BaO2-Al в соотношении 3:1, соответственно). После прохождения в объеме реакционной смеси устойчивого фронта волны горения образовывался спеченный пористый продукт светлого цвета. Полученный продукт естественным образом охлаждали на воздухе. Общее время синтеза с остыванием составляет ~10 мин. Полученный спек размалывали до состояния мелкодисперсного порошка и обрабатывался 5%-ным раствором НС1, затем продукт выделяли декантацией, промывали дистиллированной водой до нейтральной среды промывных вод и высушивали при 80°C. Выход люминофора составил более 60%. Интенсивность свечения по сравнению с прототипом увеличилась на 10%.

По сравнению с известным решением предлагаемая смесь для получения узкополосного люминофора синего свечения позволяет улучшить светотехнические параметры, а именно увеличить интенсивность свечения и удешевить конечный продукт синтеза сложных оксидов в режиме СВС за счет частичной замены дорогостоящего пероксида щелочноземельного металла на оксид кальция и уменьшения длительности подготовки шихты. Увеличение интенсивности свечения дает возможность сохранения светотехнических показателей люминисцентных приборов и ламп с уменьшением потребляемой мощностью.

Таблица 1 Люминофор 1 2 3 4 (прототип) Состав пероксид стронция, мас.% 11,17 7,53 3,8 14,75 оксид кальция, мас.% 1,76 3,51 5,36 - оксид европия (111), мас.% 2,35 2,36 2,39 2,38 оксид магния, мас.% 5,56 5,64 5,7 5,51 оксид алюминия, мас.% 42,95 43,41 43,84 42,49 алюминий металлический, мас.% 14,54 14,68 14,86 14,38 перхлорат натрия, мас.% 21,67 22,87 24,05 20,49 Длина волны излучения, нм 460±5 460±5 460±5 460±5 Яркость свечения относительно прототипа, % 1110,63 110,63 71,27 100

Похожие патенты RU2562268C1

название год авторы номер документа
Способ получения люминофора зеленого свечения 2018
  • Томилин Олег Борисович
  • Мурюмин Евгений Евгеньевич
  • Фадин Михаил Валерьевич
  • Щипакин Степан Юрьевич
  • Зайчатникова Кристина Игоревна
  • Попова Любовь Борисовна
RU2691366C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО АЛЮМИНАТА КАЛЬЦИЯ-МАГНИЯ 2014
  • Мишенина Людмила Николаевна
  • Селюнина Лилия Александровна
  • Гавриленко Екатерина Артемьевна
RU2567305C1
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА С ДЛИТЕЛЬНЫМ ПОСЛЕСВЕЧЕНИЕМ 2016
  • Томилин Олег Борисович
  • Мурюмин Евгений Евгеньевич
  • Фадин Михаил Валерьевич
  • Щипакин Степан Юрьевич
RU2634024C1
Шихта для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, и способ их получения 2015
  • Томилин Олег Борисович
  • Мурюмин Евгений Евгеньевич
  • Фадин Михаил Валерьевич
  • Щипакин Степан Юрьевич
RU2618867C2
Способ получения люминесцентного материала 2023
  • Мостовщиков Андрей Владимирович
  • Токарев Денис Сергеевич
  • Прищепа Инга Александровна
  • Поданёва Татьяна Геннадьевна
RU2815085C1
Способ получения люминофора, излучающего в оранжево-красной области спектра 2022
  • Томилин Олег Борисович
  • Мурюмин Евгений Евгеньевич
  • Фадин Михаил Валерьевич
  • Чекашкин Денис Андреевич
RU2795127C1
Способ получения люминофора, излучающего в красной области спектра 2023
  • Томилин Олег Борисович
  • Мурюмин Евгений Евгеньевич
  • Фадин Михаил Валерьевич
  • Чекашкин Денис Андреевич
RU2817249C1
Способ получения люминофора, излучающего в ближней ультрафиолетовой области спектра 2021
  • Томилин Олег Борисович
  • Мурюмин Евгений Евгеньевич
  • Фадин Михаил Валерьевич
  • Щипакин Степан Юрьевич
  • Левина Анастасия Владимировна
  • Бакина Алина Андреевна
RU2758539C1
ФОТОСТИМУЛИРУЕМЫЙ ЛЮМИНОФОР СИНЕ-ЗЕЛЕНОГО ЦВЕТА СВЕЧЕНИЯ НА ОСНОВЕ АЛЮМИНАТА СТРОНЦИЯ 2012
  • Манаширов Ошир Яизгилович
  • Зверева Екатерина Михайловна
  • Воробьев Виктор Андреевич
  • Синельников Борис Михайлович
RU2516657C2
КОМПОЗИЦИОННЫЙ ЛЮМИНЕСЦИРУЮЩИЙ МАТЕРИАЛ ДЛЯ ТВЕРДОТЕЛЬНЫХ ИСТОЧНИКОВ БЕЛОГО СВЕТА 2009
  • Вишняков Анатолий Васильевич
  • Соколов Дмитрий Юрьевич
  • Вишнякова Наталья Анатольевна
RU2511030C2

Реферат патента 2015 года РЕАКЦИОННАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ УЗКОПОЛОСНОГО ЛЮМИНОФОРА СИНЕГО СВЕЧЕНИЯ

Изобретение относится к получению алюминатных люминофоров, активированных ионами редкоземельных металлов, и может быть использовано при производстве материалов для источников и преобразователей света. Реакционная смесь для получения узкополосного люминофора синего свечения включает следующие компоненты, мас.%: пероксид стронция 7,53-11,17; оксид кальция 1,76-3,51; оксид европия (III) 2,35-2,36; оксид магния 5,56-5,64; оксид алюминия 42,95-43,41; металлический алюминий 14,54-14,68; перхлорат натрия 21,67-22,87. Изобретение позволяет улучшить светотехнические параметры, а именно интенсивность свечения люминофора синего свечения, а также упростить его получение в режиме СВС. 1 табл., 1 пр.

Формула изобретения RU 2 562 268 C1

Реакционная смесь для получения узкополосного люминофора синего свечения, включающая пероксид стронция, оксид алюминия, оксид магния, металлический алюминий, оксид европия (III) и добавку - перхлорат натрия, отличающаяся тем, что дополнительно содержит оксид кальция, при следующем соотношении их компонентов, мас.%:
пероксид стронция 7,53-11,17 оксид кальция 1,76-3,51 оксид европия (III) 2,35-2,36 оксид магния 5,56-5,64 оксид алюминия 42,95-43,41 металлический алюминий 14,54-14,68 перхлорат натрия 21,67-22,87.

Документы, цитированные в отчете о поиске Патент 2015 года RU2562268C1

СПОСОБ ПОЛУЧЕНИЯ КАТОДОЛЮМИМОФОРОН 0
SU234582A1
СПОСОБ ПОЛУЧЕНИЯ МАЛОИНЕРЦИОННЫХ КАТОДО- И ФОТОЛЮЛ\ИНОФОРОВ 0
SU235885A1
RU 2455336 C1, 10.07.2012
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1

RU 2 562 268 C1

Авторы

Томилин Олег Борисович

Щипакин Степан Юрьевич

Мурюмин Евгений Евгеньевич

Фадин Михаил Валерьевич

Даты

2015-09-10Публикация

2014-08-12Подача