СПОСОБ ДЕТОКСИКАЦИИ СТОЧНЫХ ВОД, ЗАГРЯЗНЕННЫХ СОЛЯМИ МЫШЬЯКА Российский патент 2015 года по МПК C02F1/28 C02F1/62 B01J20/16 B01J20/30 C02F101/20 C02F103/06 

Описание патента на изобретение RU2562495C2

Изобретение относится к охране окружающей среды, в частности к способам детоксикации водоемов и сточных вод, загрязненных солями мышьяка.

Очистить сточные воды от ионов мышьяка позволяет использование близкого по технической сущности и достигаемому эффекту к предложенному сорбента (патент US №6921732, МПК B01J 20/06, опубл. 26.07.2005), представляющего собой цеолит, покрытый нанофазными оксидами железа и марганца, причем сорбент содержит 0,25-10% оксида железа с молярным соотношением Mn/(Mn+Fe), равным 0,10. Сорбент получают путем добавления цеолита к железомарганцевому раствору, приготовленному смешением раствора оксида железа с марганецсодержащим соединением. Эту смесь фильтруют, и из отфильтрованного продукта методом сушки получают сорбент в виде цеолита, покрытого нанофазными гидроксидами железа и марганца. Использование вышеуказанного сорбента имеет следующие недостатки. Наибольшая концентрация загрязнения воды, при которой достигается высокая степень очистки, сравнительно мала: 1,57 мг/л. Кроме того, в процессе очистки от As(III), широко распространенного в природных условиях, высвобождаются ионы марганца Mn(II), которые также являются загрязнителями воды.

Известно использование цеолитсодержащего сорбента, обработанного прокаливанием при температуре 250°C в течение 2-4 часов для очистки воды от ионов металлов (Патент RU №2111171). Недостатком данного изобретения является низкая эффективность сорбента.

Известно использование в качестве сорбента для очистки сточных вод от ионов металлов пропитанного термообработанного цеолита раствором гуминовых кислот (Патент RU №2184607). Отмечено повышение степени сорбции ионов металлов при использовании модифицированных гуминовыми препаратами цеолитов, но следует отметить, что эффективность полученных сорбентов невысока.

Наиболее близким к предлагаемому является использование сорбента для очистки воды от ионов тяжелых металлов (патент 2328341, МПК B01J 20/06, опубл. 10.07.2008 г. ), состоящего из измельченного цеолита и нанофазного материала, который включает нанофазный гидроксид железа и нанофазный бемит, при следующем соотношении компонентов, мас. %: нанофазный гидроксид железа 12-18, нанофазный бемит 5-13, измельченный цеолит - остальное. При использовании вышеуказанного сорбента улавливаются не только анионы мышьяка (III), мышьяка (V) и хрома (VI), но и катионы кадмия, меди, свинца.

Применение сорбента для очистки воды от ионов мышьяка имеет следующие недостатки: низкая эффективность сорбента при очистке стоков с концентрацией загрязнения выше 5 мг/л, а также длительный и трудоемкий процесс подготовки сорбента. Кроме того, при данном способе очистки вносится гидроксид железа, который сам по себе может являться токсичным элементом.

Основной задачей, на решение которой направлено заявляемое изобретение, является разработка способа детоксикации сточных вод, загрязненных солями мышьяка, с использованием сорбентов, обладающих повышенной эффективностью очистки при высокой концентрации загрязнения очищаемой воды, низкой трудоемкостью процесса подготовки продукта к работе и сравнительно низкой стоимостью, а также исключает вторичное загрязнение среды гидроксидами железа.

Указанная задача достигается тем, что предлагаемый способ детоксикации сточных вод, загрязненных солями мышьяка, включает в себя использование высокоэффективного сорбирующего материала, состоящего из цеолита, модифицированного термически и химическими реагентами.

Детоксикацию осуществляют путем внесения цеолита, обработанного прокаливанием в течение 4 часов при температуре 250-300°C, с последующей пропиткой рабочим раствором следующего состава: 5 г (NH2)2CO, 5 г NH4NO3, 40 мл дистиллированной воды, 2,5 мл MnSO4, 7,5 мл гуминового препарата Powhumus, полученного мокрой щелочной экстракцией из окисленного угля (леонардита).

Химические реагенты для модификации цеолита не только нетоксичны, но и являются важнейшими компонентами минерального питания и стимуляторами роста микроорганизмов, участвующих в биодеструкции компонентов сточных вод.

Примеры осуществления изобретения

Для получения заявляемого сорбента использовали природный цеолит Сокирницкого месторождения, Красноярский край (ООО «Этнаком»), (NH2)2CO, NH4NO3, дистиллированную воду, MnSO4, и коммерческий препарат «Powhumus». «Powhumus» - гумат калия (Humintech Ltd., Германия), производят по стандартной технологии мокрой щелочной экстракции из окисленного угля (леонардита) [Ozdoba D.M., Blyth J.C., Engler R.F., Dinel H., Schnitzer, M. Leonardite and humified organic matter. In Proc Humic Substances Seminar V, Boston, MA, March 21-23, 2001].

Пример 1.

Для получения заявляемого сорбента использовали природный цеолит, который прокаливали при 250-300°C в течение 4 часов и пропитывали рабочим раствором следующего состава: 5 г (NH2)2CO, 5 г NH4NO3, 40 мл дистиллированной воды, 2,5 мл MnSO4, 7,5 мл гуминового препарата «Powhumus» (смесь 4-х компонентов). На практике это достигается тем, что две сообщающихся колонны соединены трубой, одна из колонн заполнена прокаленным цеолитом. За счет подъема колонны с рабочим раствором на определенную высоту создается разница гидравлического давления, которая вытесняет «защемленный» воздух.

Для сравнения эффективности полученного сорбента были использованы цеолит природный необработанный физико-химическими методами без добавления реагентов (контроль); цеолит прокаленный; цеолит прокаленный, пропитанный ГП Powhumus; цеолит прокаленный, пропитанный ГП Гумат-80.

Пример 2.

Сорбционную емкость цеолитов оценивали по йоду [Уголь активный древесный дробленый. Технические условия. ГОСТ 6217-74].

Для этого проводилась предварительная подготовка образца, состоящая в 10-минутном кипячении 20 г сорбента в 200 см3 0,2 н. раствора HCl с последующей отмывкой дистиллированной водой и сушкой в течение 1 ч при 110°C. Для определения 1 г сорбента встряхивают 30 мин со 100 см3 0,1 н. раствора йода в KI (25 г/дм3), затем пробу 10 см3 титруют 0,1 н. раствором тиосульфата натрия (индикатор крахмал). Йодное число Ei=12,7(V12)/my, где V1 и V2 - объемы 0,1 н. раствора тиосульфата натрия, идущего на титрование 10 см3 исходного йодного раствора и после добавления сорбента, см3; my - масса образца сорбента, г.

Сорбционная емкость различных образцов цеолитов представлена на фиг.1.

Цеолит, прошедший только термическую обработку, имел сорбционную емкость выше контрольной на 10±1,3% (фиг.1). Сорбционная емкость препарата цеолита модифицированного импрегнацией ГП Powhumus в концентрации 1 г/дм была выше контроля на 58,5±6,3%, а при применении той же концентрации ГП Гумат-80 была выше контрольной величины на 39,8±4,1%. Наибольшая сорбционная емкость была у цеолита, модифицированного по методике дегазации и термической обработки с добавлением соответствующих химикатов. Она превышала контрольную на 83,3±8,1%.

Пример 3.

Были проведены модельные опыты с мышьяковым загрязнением - растворами солей Na3AsO4. Na3AsO4 марки х.ч. применяли в концентрации 100 мг/дм3. Эта концентрация являлась остро токсичной при биотестировании [Коновалов А.С, Стом Д.И., Евсюнина Е.В. Оценка детоксикации гуматами растворов соли мышьяка методами биотестирования / Мат. междунар. научно-практич. конф. «Современные научные достижения - 2013» - С. 89-91].

Испытания полученных образцов сорбента на адсорбционную способность по отношению к мышьяку проводят следующим образом.

Исследуемые сорбенты помещали в колонку диаметром 20 мм и высотой 450 мм. Снизу под гидравлическим давлением пропускали рабочий водный раствор мышьяка в течение 60 минут.

Количество мышьяка в исходном и выходном растворе определяли метрическим методом, основанном на измерении интенсивности окраски раствора комплексного соединения мышьяка с диэтилдитиокарбаматом серебра в хлороформе [Сырье и продукты пищевые. Метод определения мышьяка. ГОСТ 26930-86].

Результаты оценки способности исследуемых цеолитов связывать мышьяк из водного раствора даны на фиг.2:

Из фиг.2, видно, что цеолит, прошедший только термическую обработку, поглощал мышьяк на 13±1,1% выше, чем контрольный вариант. Цеолит, импрегнированный ГП Powhumus, показал результат на 39,7±3,8% выше контрольного образца, а цеолит с добавлением ГП Гумат-80 - на 28,6±2,9% выше. Наибольшее поглощение мышьяка наблюдалось при использовании цеолита, активированного по методике дегазации и термической обработки. Оно было на 52,1±4,9% выше, чем при использовании контрольного варианта.

Пример 4.

Были проведены модельные опыты с мышьяковым загрязнением - растворами солей Na3AsO4. Na3AsO4 марки х.ч. применяли в концентрации 100 мг/дм3. Эта концентрация являлась остро токсичной при биотестировании.

Испытания полученных образцов сорбента на способность снижать токсичность растворов, загрязненных солями мышьяка, проводят следующим образом.

Исследуемые сорбенты помещали в колонку диаметром 20 мм и высотой 450 мм. Снизу под гидравлическим давлением пропускали рабочий водный раствор мышьяка в течение 60 минут.

Токсичность испытуемых растворов оценивали по снижению уровня интенсивности флуоресценции хлорофилла микроводорослей Scenedesmus quadricauda Оценку флуоресценции производили на «Флюорат-02-3М» в режиме непрерывных измерений. Для каждой пробы рассчитывали среднее значение уровня флуоресценции. Все эксперименты осуществляли не менее чем в 5 независимых опытах с 3 параллельными измерениями в каждом. Замеры уровня флуоресценции в исследуемых колбах вели через трое суток инкубирования на люминостате [Методика определения токсичности вод, водных вытяжек из почв, осадков сточных вод и отходов по изменению уровня флуоресценции хлорофилла и численности клеток водорослей. - М.: Акварос.- 2007. - 48 с.].

Данные биотестирования растворов Na3AsO4, получаемых после прохождения через слой сорбента, при использовании в качестве метода регистрации флуоресценции хлорофилла клеток водорослей S. quadricauda отражены на фиг.3.

Раствор 100 мг/дм3 Na3AsO4, прошедший через колонку с прокаленным цеолитом без последующего добавления к нему ГП или каких-либо других реагентов, подавлял уровень флуоресценции хлорофилла более чем на 80%. Это говорит о низкой эффективности взятого образца цеолита. Однако цеолит, прошедший прогревание и дегазацию, а также или импрегнацию ГП Powhumus, снижал токсическое действие мышьяка в растворе более чем на 60% относительно прокаленного цеолита необработанного химическими реагентами - уровень флуоресценции составил 90,3±9,1%, 79,5±8,4% и 15,5±2,1%. При биотестировании раствора, пропущенного через цеолит, пропитанный ГП Гумат-80, интенсивность флуоресценции хлорофилла составляла 55,7±5,9% относительно контроля.

Заявляемый способ детоксикации сточных вод, загрязненных солями мышьяка, с применением вышеуказанных сорбентов показал высокую эффективность при очистке вод с высокой концентрацией ионов мышьяка.

Работа проводилась при частичной финансовой поддержке Министерства образования и науки Российской Федерации (ГК от «28» октября 2011 г. №11.519.11.5016) и Программы стратегического развития.

Похожие патенты RU2562495C2

название год авторы номер документа
СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ 2007
  • Лисецкий Владимир Николаевич
  • Лисецкая Татьяна Александровна
  • Меркушева Лидия Николаевна
RU2328341C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ РАСТВОРОВ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ 2014
  • Голубева Ольга Юрьевна
  • Ульянова Наталия Юрьевна
  • Яковлев Александр Вячеславович
  • Дякина Мария Павловна
RU2561117C1
ПОЛИМЕРНЫЙ СОРБЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Шевелев Алексей Анатольевич
  • Ермоленко Анна Валерьевна
  • Медвецкий Игорь Викторович
  • Кузнецова Наталья Ивановна
  • Ковалева Светлана Валериевна
  • Бурмистров Игорь Николаевич
  • Викулова Мария Александровна
RU2734712C1
СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Мартемьянов Дмитрий Владимирович
  • Галанов Андрей Иванович
  • Журавков Сергей Петрович
  • Мухортов Денис Николаевич
  • Хаскельберг Михаил Борисович
  • Юрмазова Татьяна Александровна
  • Яворовский Николай Александрович
RU2592525C2
ОРГАНОМИНЕРАЛЬНЫЙ КОМПЛЕКС ДЛЯ ДЕТОКСИКАЦИИ ПОЧВ, ЗАГРЯЗНЕННЫХ ГЕРБИЦИДАМИ 2021
  • Чкаников Николай Дмитриевич
  • Спиридонов Юрий Яковлевич
  • Пастухов Александр Валерианович
  • Ильин Михаил Михайлович
RU2787140C1
СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД ОТ МЫШЬЯКА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Сироткина Екатерина Егоровна
RU2520473C2
КАТАЛИТИЧЕСКИЙ СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД 2016
  • Мартемьянова Ирина Владимировна
  • Плотников Евгений Владимирович
  • Мартемьянов Дмитрий Владимирович
RU2617492C1
ГУМИНО-МИНЕРАЛЬНЫЙ РЕАГЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ САНАЦИИ ЗАГРЯЗНЕННЫХ ПОЧВ, СПОСОБ ДЕТОКСИКАЦИИ ОТХОДОВ ДОБЫЧИ И ПЕРЕРАБОТКИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ И РЕКУЛЬТИВАЦИИ ОТВАЛОВ ГОРНЫХ ПОРОД И ХВОСТХРАНИЛИЩ, СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД И СПОСОБ УТИЛИЗАЦИИ ОСАДКОВ 2002
  • Шульгин А.И.
  • Шульгин А.А.
RU2233293C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ НЕФТЕЗАГРЯЗНЕННЫХ ГРУНТОВ, СПОСОБ ОБЕЗВРЕЖИВАНИЯ ОТРАБОТАННЫХ БУРОВЫХ ШЛАМОВ 2011
  • Куми Вячеслав Владимирович
RU2486166C2
Способ рекультивации почв, загрязненных тяжелыми металлами 2022
  • Мещеряков Максим Павлович
  • Мещерякова Елена Геннадьевна
  • Хавронина Вера Николаевна
  • Фомин Сергей Денисович
  • Якубов Виктор Вадимович
  • Зотов Вячеслав Геннадьевич
  • Мещеряков Илья Максимович
RU2790973C1

Иллюстрации к изобретению RU 2 562 495 C2

Реферат патента 2015 года СПОСОБ ДЕТОКСИКАЦИИ СТОЧНЫХ ВОД, ЗАГРЯЗНЕННЫХ СОЛЯМИ МЫШЬЯКА

Изобретение может быть использовано для детоксикации водоемов и очистки сточных вод, загрязненных солями мышьяка. Для осуществления заявленного способа детоксикацию сточных вод проводят с использованием сорбирующих материалов, состоящих из термически и химически модифицированного цеолита. Цеолит, прокаливают в течение 4 часов при температуре 250-300°С и дополнительно пропитывают рабочим раствором следующего состава: 5 г (NH2)2CO, 5 г NH4NO3, 40 мл дистиллированной воды, 2,5 г MnSO4, 7,5 мл гуминового препарата, полученного мокрой щелочной экстракцией из окисленного леонардита. Способ обеспечивает высокую эффективность при очистке вод с высокой концентрацией ионов мышьяка. При этом химические реагенты для модификации цеолита не только нетоксичны, но и являются важнейшими компонентами минерального питания и стимуляторами роста микроорганизмов, участвующих в биодеструкции компонентов сточных вод. 3 ил., 4 пр.

Формула изобретения RU 2 562 495 C2

Способ детоксикации сточных вод, загрязненных солями мышьяка, путем сорбции на цеолитсодержащем сорбенте, отличающийся тем, что в качестве цеолитсодержащего сорбента используют цеолит, обработанный прокаливанием в течение 4 часов при температуре 250-300°C и дополнительно пропитанный рабочим раствором следующего состава: 5 г (NH2)2CO, 5 г NH4NO3, 40 мл дистиллированной воды, 2,5 мл MnSO4, 7,5 мл гуминового препарата, полученного мокрой щелочной экстракцией из окисленного леонардита.

Документы, цитированные в отчете о поиске Патент 2015 года RU2562495C2

СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ 2007
  • Лисецкий Владимир Николаевич
  • Лисецкая Татьяна Александровна
  • Меркушева Лидия Николаевна
RU2328341C1
СПОСОБ ОЧИСТКИ ВОДЫ 2005
  • Шушков Дмитрий Александрович
  • Котова Ольга Борисовна
  • Пальшин Иван Павлович
RU2296718C1
СПОСОБ АДСОРБЦИОННОЙ ОЧИСТКИ ВОДЫ 1996
  • Конюхова Т.П.
  • Кикило Д.А.
  • Лучкин Г.С.
  • Чуприна Т.Н.
  • Михайлова О.А.
  • Дистанов У.Г.
  • Харисов Ю.Г.
RU2111171C1
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМИНЕРАЛЬНЫХ СОРБЕНТОВ (ВАРИАНТЫ) 2000
  • Шапкин Н.П.
RU2184607C2
Способ очистки сточных вод от соединений мышьяка 1986
  • Цхакая Николай Шиоевич
  • Сихарулидзе Нодар Георгиевич
  • Нозадзе Гурам Георгиевич
  • Майсурадзе Венера Романовна
  • Мчедлишвили Коба Миронович
SU1551659A1
US 6849187 B2, 01.02.2005
CN 102580670 A, 18.07.2012
KR 100857352 B1, 05.09.2008

RU 2 562 495 C2

Авторы

Кан Вячеслав Максимович

Коновалов Александр Сергеевич

Таран Денис Олегович

Бобров Алексей Николаевич

Бутырин Михаил Викторович

Стом Дэвард Иосифович

Даты

2015-09-10Публикация

2013-11-26Подача