Изобретение относится к сорбентам и способам очистки воды от мышьяка и может быть использовано для очистки как промстоков, так и воды для бытовых нужд. Вода во многих странах загрязнена мышьяком и без очистки не пригодна для использования в бытовых целях. При отравлении мышьяком поражается сосудистая система, центральная и периферическая нервная система, кожа. Известно, что неорганические соединения мышьяка более опасны, чем органические, и трехвалентный As(III) более опасен, чем As(V). Главным источником As в воде являются промстоки.
Известны различные способы очистки воды от As.
Известен способ осаждения As нанокристаллами акагенита, который получают путем осаждения гидроксида железа(III) карбонатом аммония (пат.2323988, опубл. 2009 г.), и полученный осадок сушат сублимационным способом при комнатной температуре. К недостаткам метода следует отнести многостадийность получения и применения. Вначале получают акагенит в дисперсном состоянии, сушат и полученный осадок используют для осаждения ионов мышьяка.
Предложен способ очистки сточных вод от As путем сорбции на композиционном сорбенте, содержащем в своем составе гидроксид железа и перхлорвиниловую смолу (пат.2136607, 1999 г.). К недостаткам данного способа следует отнести многостадийный способ получения адсорбента. Вначале перхлорвиниловую смолу растворяют в диметилформамиде, к полученному раствору добавляют порошок гидроксида железа, полученную органоминеральную суспензию распыляют в воде, дисперсный осадок выделяют и используют для адсорбции ионов As из водных сред. При получении композиционного дисперсного адсорбента промстоки загрязняются диметилформамидом.
Наиболее близким к предлагаемому является сорбент для очистки воды от ионов тяжелых металлов, в том числе от ионов мышьяка разной валентности, и способ его получения (пат.2328341, опубл. 10.07.2008 г.). Сорбент состоит из измельченного цеолита, нанофазного гидроксида железа и нанофазного бемита. К недостаткам способа получения сорбента следует отнести его многостадийность и сложность получения адсорбента, что приводит к его дороговизне. Вначале получают нанофазный бемит гидролизом нанопорошка алюминия. Затем получают нанофазный гидроксид железа гидролизом раствора хлорида железа раствором гидроксида аммония. Далее измельченный цеолит смешивают с Н2О, нанофазным порошком бемита и гидроксида железа, перетирают и далее полученную смесь сушат 2 часа при 50-75°С, а затем 6 часов при 190°С. Во всех известных способах гидроксид железа получают гидролизом солей железа, что является многоступенчатым способом. Вначале получают соли железа, а затем из солей Fе(ОН)3.
Задачей предлагаемого изобретения является получение сорбента для извлечения мышьяка из водных сред и разработка способа его получения.
Технический результат заключается в упрощении способа получения сорбента и увеличении степени очистки технологических растворов и сточных вод от мышьяка.
Сорбент для очистки водных сред от мышьяка содержит оксигидроксид железа (ОГЖ), выделенный из отходов станций обезжелезивания подземных вод, водорастворимый полимер и глицерин при следующем соотношении компонентов, %
В качестве водорастворимого полимера он содержит поливиниловый спирт, или полиакриламид, или метилцеллюлозу, или полиэтиленгликоль.
В качестве исходного сырья для получения сорбента использовали отходы, выделенные на станциях обезжелезивания подземных вод, которые представляют собой гелеобразную массу (пасту), содержащую в своем составе оксигидроксид железа (ОГЖ) в количестве 10-12% сухого ОГЖ с размером частиц 30-50 нм, которую модифицируют водорастворимыми полимерами, содержащими пластификатор. В качестве водорастворимого полимера рекомендуется использовать поливиниловый спирт (ПВС), полиакриламид (ПАА), метилцеллюлозу (МЦ), полиэтиленгликоль (ПЭГ), а в качестве пластификатора - глицерин.
Примеры конкретного выполнения
Пример 1
1,6 г ПВС (6,1%) растворяют в 100 мл воды, добавляют 12,6 г (48%) глицерина и при перемешивании добавляют 100 г гелеобразной массы (пасты) ОГЖ, содержащей 12 г дисперсного ОГЖ (45,9%). Все тщательно перемешивают, обрабатывают ультразвуком и оставляют полученную массу на 24 часа при комнатной температуре. При этом происходит расслаивание, верхний прозрачный водный слой сливают, а осадок распределяют слоем 8-10 см и выдерживают в течение 24 часов при комнатной температуре. При добавлении к сухому осадку воды происходит растрескивание с образованием гранул размером 0,2-0,5 см. Их промывают водой, высушивают при 50-60°С и исследуют в качестве сорбента для извлечения мышьяка из водной среды в статических и динамических условиях. Результаты испытаний представлены в таблице.
Анализ на мышьяк выполнялся в соответствии с ФЗ 1.31.2005, 01.553 (по Госстандарту методик, допущенных к применению). Исходная концентрация мышьяка в модельном растворе составляла 0,5 мг/л.
Пример 2
Гранулы получали по способу, описанному в примере 1, с той лишь разницей, что в качестве водорастворимого полимера использовали полиакриламид. Соотношение всех компонентов - как указано в примере 1. Результаты испытаний представлены в таблице.
Пример 3
Сорбент получали по способу, описанному в примере 1, с той лишь разницей, что в качестве водорастворимого полимера использовали полиэтиленгликоль (ПЭГ-15). Соотношения компонентов и результаты испытаний представлены в таблице.
Пример 4
0,5 г метилцеллюлозы растворяют в 100 мл воды, добавляют 10 г глицерина, перемешивают и постепенно при перемешивании добавляют 100 мл пасты ОГЖ (содержащей 12 г сухого ОГЖ). Все тщательно перемешивают, обрабатывают ультразвуком и оставляют на 24 часа при комнатной температуре. При этом происходит расслаивание. Верхний светлый прозрачный слой сливают, осадок слоем 5-10 см высушивают, обрабатывают водой и образовавшиеся при растрескивании гранулы тщательно промывают водой, высушивают при температуре 50-60°С и исследуют на адсорбцию мышьяка. Результаты испытаний представлены в таблице.
Таким образом, предлагаемое изобретение превосходит по степени извлечения ионов мышьяка прототип и позволяет увеличить степень очистки технологических растворов и сточных вод от мышьяка.
Содержание мышьяка в стоках при этом снижается до современных уровней ПДК (0,05 мг/дм3). Предлагаемый метод может найти применение при извлечении мышьяка из сточных вод промышленных предприятий.
Исходная концентрация AS 0,5 мг/л.
название | год | авторы | номер документа |
---|---|---|---|
Сорбент для очистки водных сред от ионов мышьяка и способ его получения | 2015 |
|
RU2628396C2 |
СПОСОБ ПОЛУЧЕНИЯ БИОПРЕПАРАТА "ФЕРРИГЕЛЬ" | 2011 |
|
RU2466713C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СОРБЕНТА | 2014 |
|
RU2552449C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА МЫШЬЯКА | 2016 |
|
RU2613519C1 |
СПОСОБ КОМПЛЕКСНОЙ ОЧИСТКИ СИЛЬНО ЗАГРЯЗНЕННОЙ ВОДЫ | 2006 |
|
RU2354439C2 |
СПОСОБ ПРЕДПОСАДОЧНОЙ ОБРАБОТКИ КЛУБНЕЙ КАРТОФЕЛЯ | 2013 |
|
RU2545667C2 |
СОРБЕНТ ДЛЯ ОЧИСТКИ НЕФТЯНЫХ ГАЗОВ ОТ СЕРОВОДОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2013 |
|
RU2540670C1 |
РАНОЗАЖИВЛЯЮЩЕЕ СРЕДСТВО И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2008 |
|
RU2383349C1 |
Способ получения композита на основе соединений железа | 2018 |
|
RU2701738C1 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА | 2016 |
|
RU2659164C1 |
Изобретение относится к сорбентам для очистки воды от мышьяка. Сорбент для очистки водных сред от мышьяка содержит нанофазный оксигидроксид, выделенный из отходов станций обезжелезивания подземных вод, водорастворимый полимер и глицерин. В качестве водорастворимого полимера сорбент содержит вещества, выбранные из поливинилового спирта, полиакриламида, метилцеллюлозы, полиэтиленгликоля. Способ получения сорбента включает смешивание отходов станций обезжелезивания, содержащих 10-12% оксигидроксида железа, с водным раствором полимера и глицерином. Смесь обрабатывают ультразвуком, выдерживают 24 часа. Образовавшийся осадок высушивают при 50-60°С. 2 н. и 1 з.п. ф-лы, 1 табл., 4 пр.
1. Сорбент для очистки водных сред от мышьяка, включающий нанофазный оксигидроксид железа (ОГЖ), отличающийся тем, что он содержит оксигидроксид железа (ОГЖ), выделенный из отходов станций обезжелезивания подземных вод, водорастворимый полимер и глицерин при следующем соотношении компонентов, %
2. Сорбент по п.1, отличающийся тем, что в качестве водорастворимого полимера он содержит поливиниловый спирт, или полиакриламид, или метилцеллюлозу, или полиэтиленгликоль.
3. Способ получения сорбента для очистки водных сред от мышьяка, отличающийся тем, что отходы станций обезжелезивания с содержанием оксигидроксида железа 10-12% смешивают с водным раствором полимера и глицерином, обрабатывают ультразвуком, выдерживают 24 часа, образующийся осадок высушивают при 50-60°С.
СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2007 |
|
RU2328341C1 |
СОРБЕНТ ТЯЖЕЛЫХ МЕТАЛЛОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ВОДЫ | 2006 |
|
RU2336946C2 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ МЫШЬЯКА | 1997 |
|
RU2136607C1 |
Способ получения металлов из растворов их соединений и аппарат для осуществления способа | 1955 |
|
SU107068A1 |
US 7326346 B2, 05.02.2008 | |||
US 7183235 B2, 27.02.2007 | |||
US 20120012532 A1, 19.01.2012 | |||
US 20110136663 A1, 09.06.2011 | |||
US 20040109821 A1, 10.06.2004 |
Авторы
Даты
2014-06-27—Публикация
2012-07-04—Подача