ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ МАГНИЙСИЛИКАТНОГО ПРОППАНТА И ПРОППАНТ Российский патент 2015 года по МПК C09K8/80 C04B35/20 C04B35/626 

Описание патента на изобретение RU2563853C1

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. Гидравлический разрыв пласта является процессом нагнетания жидкостей в нефтеносный или газоносный подземный пласт при достаточно высоких скоростях и давлениях, в результате чего пласт растрескивается. Для удерживания трещины в открытом состоянии после снятия давления разрыва применяется расклинивающий агент (проппант), который смешивается с нагнетаемой жидкостью. Применение ГРП увеличивает поток текучих сред из нефтяного или газового резервуара в скважину за счет увеличения общей площади контакта между резервуаром и скважиной, а также за счет того, что слой проппанта в трещине имеет более высокую проницаемость, чем проницаемость пласта.

Современные материалы, широко используемые для закрепления трещин в раскрытом состоянии, можно разделить на два вида - кварцевые пески и синтетические проппанты. К физическим характеристикам проппантов, которые влияют на проводимость трещины и дебит скважины, относятся такие параметры, как прочность, гранулометрический состав, форма гранул (сферичность и округлость) и плотность.

Первым и наиболее часто используемым материалом для закрепления трещин являются пески, плотность которых составляет приблизительно 2,65 г/см3. Пески обычно используются при гидроразрыве пластов, в которых напряжение сжатия не превышает 40 МПа. Для снижения разрушаемости материала и улучшения его эксплуатационных характеристик на зерна песка наносят специальное полимерное покрытие. В конце 70-х годов с созданием новых среднепрочных и высокопрочных синтетических проппантов начался подъем в области применения ГРП на газовых и нефтяных месторождениях, приуроченных к плотным песчаникам и известнякам, расположенным на больших глубинах.

Среднепрочными являются керамические проппанты плотностью 2,7 - 3,3 г/см3 используемые при напряжении сжатия до 69 МПа. Сверхпрочные проппанты с плотностью 3,3 - 3,8 г/см3, используются при напряжении сжатия до 100 МПа. Производятся и используются также облегченные проппанты с плотностью 2,55 г/см3 и менее. На протяжении длительного времени среди специалистов, работающих в сфере нефтедобычи, преобладало мнение, что основным параметром проппанта, обеспечивающим максимальный дебит скважины, является его прочность. В этой связи с увеличением глубины скважин применялся все более плотный и соответственно более прочный проппант. Однако в серии масштабных комплексных полевых испытаний, проведенных в 2011 - 2013 годах компанией Oxane Materials, было убедительно показано, что проппант с пониженной плотностью (среднеплотный или облегченный) и усовершенствованной поверхностью, не обладающий исключительными прочностными характеристиками, способен обеспечивать высокие дебиты как средних, так и глубоких скважин. Этот эффект достигается преимущественно за счет улучшения переноса и оптимизации расположения проппанта в трещинах при проведении операции ГРП с использованием жидкостей с низкой вязкостью, что является особенно актуальным при использовании технологии горизонтального бурения в сочетании с гидроразрывом (см. доклады компании Oxane Materials на конференции SPE Hydraulic Fracturing Technology в Woodlands, штат Техас, США, 4-6 февраля 2014 г.).

Транспортировка проппанта является результатом трех основных механизмов: гравитационного оседания (Закон Стокса), осаждения (образование дюн) и сальтации. Соответственно снижение плотности проппанта уменьшает скорость осаждения, а низкий коэффициент трения уменьшает высоту дюны, в результате чего расклинивающий агент проходит все дальше в трещину.

Трение является ключевым механизмом переноса в системах жидкости с низкой вязкостью. Поскольку гидравлические разрывы характеризуются значительной шероховатостью и извилистостью, каждый раз, когда частица проппанта сталкивается c поверхностью образования трещины или с соседней частицей проппанта, она теряет энергию переноса. Кроме того, доступная энергия для переноса (то есть скорость жидкости) быстро рассеивается по мере того, как разрыв стремится к распространению и по мере того, как жидкость, применяемая для ГРП, устремляется в направлении сопряженных разрывов. Причем, в начале ГРП проппант обязательно будет сконцентрирован в первичном разрыве, препятствуя продвижению следующих порций расклинивателя. Следовательно, в процессе роста гидроразрыва трение в гидравлической системе постоянно усиливается. Для гранулированных твердых веществ, сила трения может быть определена количественно с помощью угла естественного откоса, который зависит от коэффициента трения. Применительно к проппантам это означает, что материал с низким коэффициентом трения будет иметь небольшой угол естественного откоса, в результате чего образуется более широкая, но неглубокая пачка, поэтому следующим порциям проппанта легче перемещаться над неглубокой дюной, чем над крутой. В результате этого увеличивается расклиненная длина трещин. В системе гидравлического разрыва, этот фактор имеет прямое влияние на дебит скважины.

Уменьшения угла естественного откоса сыпучего материала можно добиться путем снижения его удельной плотности, а также путем придания частицам более гладкой поверхности.

Специалистам, работающим в области производства керамических проппантов, известны способы снижения удельной плотности расклинивателей. Например, путем введения в материал порообразующих добавок или использованием некоторых специальных технологических приемов, обеспечивающих создание в центре гранулы крупной единичной поры. Однако в этих случаях неизбежным становится значительное снижение прочности расклинивателя. Наиболее предпочтительным способом снижения удельной плотности материала является изменение состава исходной шихты с использованием природного сырья, взятого с конкретного месторождения.

Известен, например, проппант из каолина Нижне-Увельского месторождения и способ его применения (патент РФ №2521680), представляющий собой спеченные обожженные керамические гранулы со средним размером 0,15-2,0 мм, с насыпной плотностью 1,35-1,47 г/см3 и удельным весом 2,37-2,49 г/см3, состава, мас.%: оксид алюминия 17,00-29,00, диоксид кремния 65,00-77,00, оксид кальция 0,20-0,39, оксид хрома 0,03-0,0, оксид железа 1,80-4,20, оксид калия 0,40-0,95, оксид натрия 0,20-0,38, оксид титана 1,20-2,00, оксид магния 0,50-1,00, оксид марганца 0,00-0,01, пятиокись фосфора 0,00-0,01. В известном техническом решении снижение плотности проппанта алюмосиликатного состава достигается за счет формирования в грануле микропористой структуры, что приводит к снижению прочностных характеристик материала.

В последнее десятилетие все большее доверие потребителей завоевывают магнийсиликатные проппанты, производимые из природного сырья на основе серпентинита, оливинита, дунита как самостоятельно, так и в виде смеси с природным кварцполевошпатным песком. Указанные проппанты в силу физико-химических особенностей исходного сырья изначально обладают пониженной удельной плотностью.

Известна шихта для изготовления магнийсиликатного проппанта и проппант, полученный из этой шихты (патент РФ №2463329), где в качестве добавки используют смесь брусита, колеманита, кремнефтористого натрия и фаялита в количестве 0,4-3,0% от массы шихты на основе магнийсиликатного сырья, при следующем их соотношении, % от массы шихты: брусит 0,1-1,0, колеманит 0,1-0,6, кремнефтористый натрий 0,1-0,4, фаялит 0,1-1,0, при общем содержании MgO в шихте - 19-48 масс.%. Причем обжиг осуществляют при температуре 1150-1220°С, а в качестве основного компонента шихты используют природное магнийсиликатное сырье - серпентинит, оливинит, дунит как самостоятельно, так и в виде смеси с природным кварцполевошпатным песком.

Недостатком известного технического решения является повышенная удельная плотность проппанта (2,75 г/см3), обусловленная применением спекающей добавки.

Наиболее близкими по технической сущности к заявляемому техническому решению являются шихта для изготовления высокопрочного магнийсиликатного проппанта (патент РФ №2521989), содержащая кварцполевошпатный песок и магнийсиликатное сырье, где помол исходной шихты, содержащей 24-28 масс. % MgO, осуществляют до фракции 8 мкм и менее, а гранулирование производят на воде с добавлением натриевой или калиевой соли полиметиленнафта-линсульфокислоты или поликарбоксиметиленсульфокислоты в количестве 0,02-0,07% от массы шихты в пересчете на твердое вещество, и проппант, полученный из этой шихты. Полученный проппант, имея низкую разрушаемость, также обладает повышенной удельной плотностью (2,75-2,8 г/см3).

Технической задачей, на решение которой направлено заявляемое изобретение, является получение магнийсиликатного проппанта с удельной плотностью 2,5-2,7 г/см3 и углом естественного откоса 25-27°, при сохранении его прочностных характеристик, осуществляемое за счет используемого состава шихты.

Указанный результат достигается тем, что шихта для изготовления магнийсиликатного проппанта, содержащая измельченную до фракции менее 8 мкм смесь термообработанного серпентинита и кварцполевошпатного песка, в качестве указанного песка содержит песок Южно-Ильинского месторождения фракции менее 2 мм, состава, масс. %:

диоксид кремния 90,0-91,0 оксид алюминия 3,3-3,5 оксид кальция 0,9-1,0 оксид железа 1,6-1,8 оксид калия 1,2-1,3 оксид натрия 0,7-0,8 примеси остальное,

при следующем соотношении компонентов шихты, масс.%:

указанный серпентинит - 61,0 - 67,0,

указанный песок - 33,0 - 39,0.

Указанный результат достигается также тем, что магнийсиликатный проппант получен из вышеуказанной шихты.

Масштабно применяемые в настоящее время проппанты помимо повышенной плотности имеют угол естественного откоса 28 - 30° (см. Разработка и полевые испытания усовершенствованного керамического проппанта. Марк Г. Мак и Крис Э. Кокер, Oxane Materials, Inc, Общество инженеров-нефтяников. Материалы к технической конференции SPE в Новом Орлеане, штат Луизиана, США, 30 сентября - 2 октября 2013 года), следовательно, обладают повышенным коэффициентом трения, что препятствует их рациональному размещению в трещинах ГРП и ведет к снижению дебита скважины. Таким образом, снижение угла естественного откоса в сочетании с уменьшением удельной плотности продукта представляется одним из направлений преодоления указанного недостатка.

Введение в состав заявляемой шихты кварцполевошпатного песка Южно-Ильинского месторождения (РФ, Свердловская обл.) позволяет в некоторой степени снизить удельную плотность проппанта, а также способствует остекловыванию поверхности гранул при спекающем обжиге без образования заметного количества спеков. Остеклованная поверхность вносит значительный вклад в уменьшение трения между гранулами даже в случае умеренных показателей сферичности/округлости продукта.

Авторами были проведены сравнительные испытания различных кварцполевошпатных песков близкого химического состава в качестве наполнителя в шихту для изготовления магнийсиликатного проппанта. Сырьем для изготовления проппанта была выбрана шихта, содержащая 24 - 28 масс.% MgO (по патенту РФ №2521989) с целью получения проппанта с высокой прочностью. В результате было установлено, что только песок Южно-Ильинского месторождения гарантирует одновременное снижение удельной плотности и остекловывание поверхности гранул без дополнительного введения стеклообразующих и спекающих добавок (см. таблицу 1). Вероятно, это связано с уникальным химическим и минералогическим составом керамики, формирующимся в процессе спекающего обжига. Оптимальное соотношение оксидов кремния, натрия, кальция и алюминия обеспечивает образование в керамике при температуре спекающего обжига вязкой стеклофазы. Экспериментальным путем было установлено, что проппант имеет лучшие характеристики при использовании заявляемого песка фракции менее 2 мм. Это объясняется более высокой размолоспособностью материала. Кроме того, применение мелкодисперсного песка позволяет снизить энергоемкость процесса измельчения.

Пример осуществления изобретения. 6,5 кг серпентинита, термообработанного при температуре 1000°C и 3,5 кг высококремнеземистого песка Южно-Ильинского месторождения, содержащего:

диоксид кремния 90,0 оксид алюминия 3,3 оксид кальция 0,9 оксид железа 1,6 оксид калия 1,2 оксид натрия 0,7 примеси остальное

Фракции менее 2 мм в качестве кварцполевошпатного наполнителя, высушенного при температуре 150°C в течение 1 часа, подвергали совместному помолу до фракции менее 8 мкм. Контроль фракционного состава проводили на анализаторе размера частиц Horiba LA - 300. Полученный материал гранулировали на лабораторном тарельчатом грануляторе. Гранулят обжигали при температуре, достаточной для максимального упрочнения керамики - 1240°C. Пробу обожженных проппантов фракции 30/60 меш направляли на определение удельного веса и разрушаемости по общепринятой методике ISO 13503 - 2:2006, а

также угла естественного откоса на приборе УВТ-3М. Подобным образом были изготовлены пробы с использованием в качестве кварцполевошпатного наполнителя песков различных месторождений Среднего и Южного Урала РФ. Также была испытана проба песка Южно-Ильинского месторождения фракции 2 и более мм. Результаты измерений представлены в таблице 1.

Использование высококремнеземистого песка Южно-Ильинского месторождения с другим химическим составом, находящимся в рамках заявляемого интервала, позволяет получать магнийсиликатный проппант с характеристиками, соответствующими примерам 4-6 таблицы 1. Это объясняется тем, что природные пески каждого отдельно взятого месторождения обладают естественными незначительными колебаниями химического состава, не оказывающими определяющего влияния на свойства магнийсиликатного проппанта.

Таблица 1 - свойства магнийсиликатного проппанта

* - песок Южно-Ильинского месторождения фракции 2 и более мм.

Похожие патенты RU2563853C1

название год авторы номер документа
Способ изготовления магнийсиликатного проппанта и проппант 2015
  • Пейчев Виктор Георгиевич
  • Плотников Василий Александрович
  • Глызин Эдуард Викторович
  • Шмотьев Сергей Фёдорович
  • Плинер Сергей Юрьевич
  • Рожков Евгений Васильевич
  • Сычёв Вячеслав Михайлович
RU2613676C1
Сырьевая шихта для изготовления магнизиально-кварцевого проппанта 2017
  • Шмотьев Сергей Фёдорович
  • Плинер Сергей Юрьевич
  • Рожков Евгений Васильевич
  • Сычёв Вячеслав Михайлович
RU2646910C1
Способ изготовления магнезиально-кварцевой сырьевой шихты, используемой при производстве проппантов 2016
  • Шмотьев Сергей Фёдорович
  • Плинер Сергей Юрьевич
  • Рожков Евгений Васильевич
  • Сычев Вячеслав Михайлович
RU2617853C1
Шихта для изготовления магнезиально-кварцевого проппанта 2019
  • Шмотьев Сергей Фёдорович
  • Плинер Сергей Юрьевич
  • Рожков Евгений Васильевич
  • Сычёв Вячеслав Михайлович
RU2753285C2
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ЛЕГКОВЕСНОГО КРЕМНЕЗЁМИСТОГО ПРОППАНТА И ПРОППАНТ 2017
  • Плинер Сергей Юрьевич
  • Шмотьев Сергей Фёдорович
  • Рожков Евгений Васильевич
  • Сычев Вячеслав Михайлович
RU2650149C1
Шихта для изготовления керамического проппанта и проппант 2022
  • Шмотьев Сергей Федорович
  • Рожков Евгений Васильевич
  • Сычев Вячеслав Михайлович
  • Плинер Александр Сергеевич
  • Плотников Василий Александрович
  • Пейчев Виктор Георгиевич
RU2781688C1
Магнийсиликатный проппант 2016
  • Шмотьев Сергей Фёдорович
  • Плинер Сергей Юрьевич
  • Рожков Евгений Васильевич
  • Сычёв Вячеслав Михайлович
RU2615197C1
СПОСОБ ИЗГОТОВЛЕНИЯ УЛЬТРАЛЕГКОВЕСНОГО КРЕМНЕЗЁМИСТОГО МАГНИЙСОДЕРЖАЩЕГО ПРОППАНТА 2013
  • Пейчев Виктор Георгиевич
  • Плотников Василий Александрович
  • Шмотьев Сергей Фёдорович
  • Плинер Сергей Юрьевич
  • Рожков Евгений Васильевич
  • Сычев Вячеслав Михайлович
RU2535540C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО МАГНИЙСИЛИКАТНОГО ПРОППАНТА 2013
  • Плотников Василий Александрович
  • Плинер Александр Сергеевич
  • Пейчев Виктор Георгиевич
  • Плинер Сергей Юрьевич
  • Шмотьев Сергей Фёдорович
  • Сычёв Вячеслав Михайлович
  • Рожков Евгений Васильевич
RU2521989C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕГКОВЕСНОГО КРЕМНЕЗЕМИСТОГО МАГНИЙСОДЕРЖАЩЕГО ПРОППАНТА 2014
  • Плотников Василий Александрович
  • Пейчев Виктор Георгиевич
  • Шмотьев Сергей Фёдорович
  • Плинер Сергей Юрьевич
  • Рожков Евгений Васильевич
  • Сычев Вячеслав Михайлович
RU2547033C1

Реферат патента 2015 года ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ МАГНИЙСИЛИКАТНОГО ПРОППАНТА И ПРОППАНТ

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. Шихта для изготовления магнийсиликатного проппанта, содержащая измельченную до фракции менее 8 мм смесь термообработанного серпентинита и кварцполевошпатного песка, в качестве указанного песка содержит песок Южно-Ильинского месторождения фракции менее 2 мм, состава, мас.%: диоксид кремния 90,0 - 91,0, оксид алюминия 3,3 - 3,5, оксид кальция 0,9 - 1,0, оксид железа 1,6 - 1,8, оксид калия 1,2 - 1,3, оксид натрия 0,7 - 0,8, примеси - остальное, при следующем соотношении компонентов шихты, мас.%: указанный серпентинит - 61,0 - 67,0; указанный песок - 33,0 - 39,0. Магнийсиликатный проппант получен из вышеуказанной шихты. 2 н.п. ф-лы, 1 пр., 1 табл.

Формула изобретения RU 2 563 853 C1


1. Шихта для изготовления магнийсиликатного проппанта, содержащая измельченную до фракции менее 8 мм смесь термообработанного серпентинита и кварцполевошпатного песка, отличающаяся тем, что она в качестве указанного песка содержит песок Южно-Ильинского месторождения фракции менее 2 мм, состава, мас.%:
диоксид кремния 90,0 - 91,0 оксид алюминия 3,3 - 3,5 оксид кальция 0,9 - 1,0 оксид железа 1,6 - 1,8 оксид калия 1,2 - 1,3 оксид натрия 0,7 - 0,8 примеси остальное,


при следующем соотношении компонентов шихты, мас.%:
указанный серпентинит 61,0 - 67,0 указанный песок 33,0 - 39,0

2. Магнийсиликатный проппант, характеризующийся тем, что он получен
из шихты по п.1.

Документы, цитированные в отчете о поиске Патент 2015 года RU2563853C1

СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО МАГНИЙСИЛИКАТНОГО ПРОППАНТА 2013
  • Плотников Василий Александрович
  • Плинер Александр Сергеевич
  • Пейчев Виктор Георгиевич
  • Плинер Сергей Юрьевич
  • Шмотьев Сергей Фёдорович
  • Сычёв Вячеслав Михайлович
  • Рожков Евгений Васильевич
RU2521989C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕГКОВЕСНОГО МАГНИЙСИЛИКАТНОГО ПРОППАНТА И ПРОППАНТ 2010
  • Плотников Василий Александрович
  • Рожков Евгений Васильевич
  • Пейчев Виктор Георгиевич
  • Шмотьев Сергей Федорович
  • Плинер Сергей Юрьевич
  • Сычев Вячеслав Михайлович
RU2437913C1
ПРОППАНТ И СПОСОБ ЕГО ПРИМЕНЕНИЯ 2013
  • Кэннен Чед
  • Кэнова Стив
  • Рукавишников Владимир Васильевич
RU2521680C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИЙСИЛИКАТНОГО ПРОППАНТА И ПРОППАНТ 2011
  • Плотников Василий Александрович
  • Пейчев Виктор Георгиевич
  • Прибытков Евгений Анатольевич
  • Алексеев Владимир Владимирович
RU2463329C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИЙСИЛИКАТНЫХ ПРОППАНТОВ 2007
  • Прибытков Евгений Анатольевич
  • Плинер Сергей Юрьевич
  • Шмотьев Сергей Федорович
  • Сычев Вячеслав Михайлович
  • Пейчев Виктор Георгиевич
RU2342420C1
US 7521389 B2, 21.04.2009

RU 2 563 853 C1

Авторы

Шмотьев Сергей Фёдорович

Даты

2015-09-20Публикация

2014-08-05Подача