Область техники
Изобретение относится к балансировке кварцевых полусферических резонаторов волновых твердотельных гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения.
Уровень техники
Резонатор является основной деталью ВТГ, и его качество в основном определяет точность гироскопа, в связи с чем такие резонаторы, как правило, изготавливают из кварцевого стекла [Loper E.J., Lynch D.D. Патент США НКИ 73-505 №4157041 (1979)]. Отклонение геометрии резонатора от идеальной осесимметричной формы приводит к возникновению массового дисбаланса, являющегося источником погрешности ВТГ. Распределение массы резонатора по окружному углу М(φ) может быть представлено в виде ряда:
где k - номер формы массового дефекта резонатора; M0 - равномерно распределенная масса резонатора по окружному углу; Mk - величина k-й формы массового дефекта резонатора; φk - ориентация k-й формы массового дефекта резонатора относительно единого условного нуля окружного угла.
При отклонении геометрии резонатора от осесимметричной формы Mk≠0. Согласно [Egarmin N.E., Yurin V.E. Introduction to theory of vibratory gyroscopes. M.: Binom, 1993] отличие от нуля M1, М2 или М3 приводит к колебаниям центра масс резонатора при работе гироскопа, дополнительному рассеянию энергии колебаний резонатора в местах его закрепления и к систематической погрешности ВТГ. При возникает расщепление собственной частоты резонатора, приводящее к случайным погрешностям ВТГ. Для устранения массового дисбаланса резонатор балансируют по этим четырем формам массового дефекта, то есть сначала определяют параметры М1, М2, М3, М4, φ1, φ2, φ3, φ4 и затем удаляют неуравновешенную массу.
Известен способ балансировки зубчатых резонаторов ВТГ (аналог) [Патент РФ №2526217, МПК G01C 19/56, опубликовано 20.08.2014]. Известный способ позволяет балансировать резонаторы ВТГ, снабженные специальными балансировочными зубцами, расположенными на кромке тонкостенной оболочки. В известном способе определяют неуравновешенную массу резонатора с помощью пьезоэлектрических датчиков, рассчитывают массы, подлежащие удалению с каждого балансировочного зубца, а затем удаляют их электрохимическим способом.
Недостатком аналога является необходимость нарезки на кромке резонатора балансировочных зубцов, что представляет собой сложную технологическую операцию, в ходе которой в резонатор неизбежно вносится дополнительный массовый дисбаланс за счет погрешностей в размерах балансировочных зубцов.
Известен способ балансировки беззубцового полусферического резонатора ВТГ (ближайший аналог - прототип) [Патент РФ №2147117, МПК G01C 19/56, опубликовано 27.03.2000]. В известном способе неуравновешенную массу беззубцового полусферического резонатора из кварцевого стекла измеряют с помощью пьезоэлектрического датчика, рассчитывают неуравновешенную массу путем математической обработки полученных экспериментальных данных и удаляют неуравновешенную массу ионным лучом с поверхности полусферической оболочки резонатора.
Недостатком прототипа является низкая производительность процесса балансировки, связанная с небольшой скоростью удаления материала потоком ионов. По оценке авторов время балансировки может составить несколько десятков часов. Другим недостатком является неравномерное по окружному углу ухудшение качества поверхности, связанное с возникновением дефектов при ионно-плазменном травлении, которое может повлечь уменьшение добротности резонатора.
Раскрытие изобретения
Задачей и техническим результатом предлагаемого способа является устранение недостатков прототипа, а именно существенное уменьшение времени и трудоемкости балансировки кварцевых полусферических резонаторов по первым четырем формам массового дефекта.
Результат достигается за счет химического растворения неуравновешенной массы с поверхности кварцевого полусферического резонатора, частично погруженного в травильный раствор. Заявленный способ балансировки кварцевого полусферического резонатора ВТГ заключается в химическом травлении частично погруженного резонатора радиуса R в течение времени, определяемого в соответствии с предварительно определенными (по результатам измерений) величинами параметров первых четырех форм массового дефекта резонатора (М1, М2, М3, М4, φ1, φ2, φ3, φ4).
При этом кварцевый полусферический резонатор устанавливают в положение, при котором ось его симметрии горизонтальна, а единый нуль окружного угла находится в нижнем положении, поворачивают резонатор вокруг оси симметрии на угол Δφ относительно единого нуля окружного угла и в этом положении частично погружают резонатор в травильный раствор, выставляя удвоенный зенитный угол сферического сегмента обрабатываемой поверхности 2α, а затем проводят химическое травление в течение времени t.
При удалении 1-й формы массового дефекта величиной М1 и ориентацией φ1, устанавливают 2α=134°, Δφ=-φ1, причем время химического травления составляет t1=0,973М1/(R2ν), где ν - удельная скорость растворения кварцевого стекла, определяемая экспериментально (принимается в формуле постоянным коэффициентом).
При удалении 2-й формы массового дефекта величиной М2 и ориентацией φ2, устанавливают 2α=104°, проводят химическое травление в течение времени затем поворачивают резонатор вокруг оси на 180° и проводят химическое травление в течение времени t2. Величину определяют по формуле
а величину по формуле
При удалении 3-й формы массового дефекта величиной М3 и ориентацией φ3 устанавливают 2α=86°, Δφ=-φ3, проводят химическое травление в течение времени t3=0,422М3/(R2ν), затем дважды последовательно в одном направлении поворачивают резонатор на 120° вокруг оси симметрии и в каждом угловом положении проводят химическое травление в течение времени t3.
При удалении 4-й формы массового дефекта величиной M4 и ориентацией φ4 устанавливают величиной 2α=66°, проводят химическое травление в течение времени затем трижды последовательно в одном направлении поворачивают резонатор на 90° вокруг оси симметрии и в каждом угловом положении проводят химическое травление в течение времени t4. Величину определяют по формуле
а величину - по формуле
Преимуществом заявленного способа является малое время и низкая трудоемкость балансировки кварцевых полусферических резонаторов. Кроме того, заявленный способ исключает появление поверхностных механических дефектов, обеспечивая сохранение добротности резонатора.
Перечень фигур
На фиг. 1 показана схема расположения резонатора в ванне с травильным раствором (фронтальный вид и вид сбоку).
Осуществление изобретения
Кварцевый полусферический резонатор ВТГ 1 радиуса R с предварительно определенными на испытательном стенде значениями параметров 1, 2, 3, 4 форм массового дефекта М1, М2, М3, М4, φ1, φ2, φ3, φ4, согласно фиг. 1. устанавливают в положение, при котором ось его симметрии ОВ горизонтальна, а единый нуль окружного угла находится в нижнем положении, поворачивают резонатор вокруг оси симметрии на угол Δφ относительно единого нуля окружного угла и в этом положении частично погружают резонатор в травильный раствор 2, устанавливая удвоенный зенитный угол сферического сегмента обрабатываемой поверхности 2α, а затем проводят химическое травление в течение времени t. В ходе химического травления с обрабатываемой поверхности S резонатора удаляется слой стекла массой m
где ν - экспериментально определяемая удельная скорость растворения кварцевого стекла, величина которой зависит от состава и температуры травильного раствора.
Угловая зависимость снимаемой с боковой поверхности резонатора массы имеет вид:
где ρ - плотность материала резонатора; d - толщина растворенного слоя; α - зенитный угол сферического сегмента резонатора, погруженного в травильный раствор; θ - полярный угол точки резонатора на поверхности раствора в сферической системе координат.
Разложим m(φ; α) в ряд Фурье по окружному углу φ, удерживая первые четыре гармоники:
где
Коэффициент C0 характеризует равномерно распределенную по углу φ массу, удаляемую с поверхности резонатора, величина которой не влияет на точность работы ВТГ.
При балансировке резонатора необходимо удалять первые четыре формы дефекта распределения массы резонатора поочередно и независимо друг от друга. При этом следует учитывать, что балансировка любой k-й гармоники приводит к появлению кратных гармоник с номерами n·k (n=2, 3, 4…). Таким образом, при устранении 1-й формы дефекта масс образуются гармоники с номерами 2, 3, 4, …, а при устранении 2-й формы - все четные гармоники. Балансировка 3-й и 4-й форм дефекта влечет за собой появление лишь старших гармоник с номерами свыше четвертого номера, не влияющих на характеристики ВТГ. Поэтому следует балансировать сначала последовательно 1-ю и 2-ю гармоники, а затем в произвольном порядке - 3-ю и 4-ю гармоники.
Если осуществлять N-кратную химическую обработку части поверхности полусферы, последовательно поворачиваемой на угол 2π/N вокруг оси симметрии, угловое распределение химически удаляемой массы будет иметь вид
При устранении 1-й формы дефекта невозможно подобрать такой зенитный угол α, при котором одновременно С2=С3=С4=0. Вместе с тем, α1=67° коэффициент С3=0, но при этом возникают дополнительные дефекты по 2-й и 4-й формам массового дефекта:
где величины k=0, 1, 2, 4 приведены в табл. 1.
Таким образом, при устранении 1-й формы массового дефекта полусферический резонатор устанавливают в положение, когда Δφ=-φ1, а удвоенное значение зенитного угла 2α=134°. Время химического травления резонатора при удалении 1-й формы массового дефекта резонатора составляет t1=0,973М1/(R2ν), а возникшие при этом дополнительные дефекты согласно (11) удаляют при балансировке полусферического резонатора по 2-й и 4-й формам массового дефекта.
При устранении 2-й формы массового дефекта полусферического резонатора оптимальное значение зенитного угла сферического сегмента составляет α=α2=52°, когда С4≈0. Обработку поверхности резонатора проводят в два этапа. Сначала в установленном положении резонатора химически удаляют половину требуемой массы, затем поворачивают резонатор вокруг оси симметрии на 180° и химически удаляют оставшуюся половину дефектной массы. При этом только коэффициенты С0 и С2 отличны от нуля, т.е. избирательно устраняется 2-я форма дефекта распределения массы резонатора:
где k=0,2 (см. табл. 1). Время химического травления в каждом положении резонатора составляет Величину определяют по формуле (2), а величину - по формуле (3).
Устранение 3-й формы массового дефекта полусферического резонатора проводят в три этапа при α=α3=43°, последовательно поворачивая его дважды в одном и том же направлении на 120° вокруг оси симметрии относительно начальной ориентации Δφ=-φ3. В каждом положении резонатора химически удаляется 1/3 часть общей удаляемой массы:
где k=0,3 (см. табл. 1). Время химического травления в каждом положении резонатора составляет t3=0,422M3/(R2ν).
Устранение 4-й формы массового дефекта полусферического резонатора осуществляется в четыре этапа, при α=α4=34°, последовательно поворачивая его трижды в одном и том же направлении на 90° вокруг оси симметрии относительно начальной ориентации На каждом этапе химически удаляется 1/4 часть общей удаляемой массы:
где k=0,4 (см. табл. 1). Время химического травления в каждом положении резонатора составляет Величину определяют по формуле (4), а величину - по формуле (5).
Пример осуществления способа
Поясним процедуру удаления массового дисбаланса кварцевого полусферического резонатора следующим примером. Проводят устранение предварительно определенного массового дефекта 3-й формы величиной М4=10 мг в полусферическом резонаторе радиусом R=3 см, изготовленном из кварцевого стекла. Пусть ориентация данной формы массового дефекта относительно условного нуля резонатора составляет φ3=10°.
Кварцевый полусферический резонатор ВТГ 1 с предварительно определенными значениями параметров 3-й формы массового дефекта устанавливают в положение, при котором ось его симметрии горизонтальна, а единый нуль окружного угла находится в нижнем положении. Поворачивают резонатор вокруг оси симметрии на угол Δφ=-10° относительно единого нуля окружного угла и в этом положении частично погружают резонатор в травильный раствор 2, устанавливая удвоенный зенитный угол сферического сегмента обрабатываемой поверхности 2α=86° (фиг. 1). В качестве травильного раствора могут быть использованы известные специалистам водные растворы плавиковой кислоты или растворы солей плавиковой кислоты в серной кислоте [Альтах О.Л., Саркисов П.Д. Шлифование и полирование стекла и стеклоизделий. М.: Высшая школа, 1988. 231 с.]. Авторами был использован раствор следующего состава:
Определенная экспериментально скорость травления кварцевого стекла в растворе данного состава при 22°C составляет 5·10-5 г/см2·мин. [Б.С. Лунин, С.Н. Торбин, М.Н. Данчевская, И.В. Батов, Влияние нарушенного поверхностного слоя на добротность резонаторов из кварцевого стекла // Вестн. Моск. Ун-та. Сер. 2. Химия. 1994. Т. 35. №1. С. 24-28]. Проводят химическое травление частично погруженного резонатора в течение времени t3=0,422M3/R2ν=9,38 мин. Затем дважды последовательно в одном и том же направлении поворачивают резонатор на 120° вокруг оси симметрии и в каждом угловом положении проводят химическое травление в течение времени t3. После химической обработки резонатор промывают дистиллированной водой и сушат.
Удаление других форм массового дефекта резонатора проводят аналогичным образом.
Предложенная процедура удаления неуравновешенной массы позволяет балансировать кварцевый полусферический резонатор ВТГ по 1, 2, 3, 4-й формам его массового дефекта с низкой трудоемкостью (по сравнению с прототипом). Из приведенного примера следует, что общее время обработки в предложенном способе составляет около 30 минут. По оценке авторов при удалении такой же неуравновешенной массы ионно-плазменным травлением (прототип) необходимо около 20…30 часов. Таким образом, время и трудоемкость балансировки кварцевых полусферических резонаторов ВТГ предложенным способом может снизиться до 40…60 раз.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ БАЛАНСИРОВКИ МЕТАЛЛИЧЕСКОГО БЕЗЗУБЦОВОГО РЕЗОНАТОРА ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА | 2014 |
|
RU2560755C1 |
Способ балансировки металлического резонатора волнового твердотельного гироскопа | 2020 |
|
RU2754394C1 |
СПОСОБ БАЛАНСИРОВКИ ПОЛУСФЕРИЧЕСКОГО РЕЗОНАТОРА ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА | 1998 |
|
RU2147117C1 |
СПОСОБ УСТАНОВКИ КОЛЬЦЕВОГО ЗАЗОРА ПРИ СБОРКЕ ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА | 2013 |
|
RU2546987C1 |
Способ изготовления глубокопрофильных многоуровневых микроструктур в кварцевом стекле | 2023 |
|
RU2804791C1 |
СПОСОБ ДИАГНОСТИРОВАНИЯ ЦИКЛИЧЕСКИХ МАШИН - МЕТАЛЛОРЕЖУЩИХ СТАНКОВ ФАЗОХРОНОМЕТРИЧЕСКИМ МЕТОДОМ | 2013 |
|
RU2561236C2 |
ВОЛНОВОЙ ТВЕРДОТЕЛЬНЫЙ ГИРОСКОП С МЕТАЛЛИЧЕСКИМ РЕЗОНАТОРОМ | 2021 |
|
RU2785956C1 |
РЕЗОНАТОР ТВЕРДОТЕЛЬНОГО ВОЛНОВОГО ГИРОСКОПА | 2020 |
|
RU2744820C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СФЕРИЧЕСКОГО РЕЗОНАТОРА | 2019 |
|
RU2717262C1 |
СПОСОБ РАЗВЕРТЫВАНИЯ И ЗАКРУТКИ ОТНОСИТЕЛЬНО ЦЕНТРА МАСС КОСМИЧЕСКОЙ ТРОСОВОЙ СИСТЕМЫ С ПОМОЩЬЮ ГРАВИТАЦИОННЫХ И ВНУТРЕННИХ СИЛ | 2012 |
|
RU2536611C2 |
Изобретение относится к балансировке кварцевых полусферических резонаторов твердотельных волновых гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения. Способ балансировки кварцевого полусферического резонатора волнового твердотельного гироскопа по предварительно определенным величинам параметров первых четырех форм массового дефекта резонатора заключается в том, что кварцевый полусферический резонатор радиуса R устанавливают в положение, при котором ось его симметрии горизонтальна, а единый нуль окружного угла находится в нижнем положении, поворачивают резонатор вокруг оси симметрии на угол Δφ относительно единого нуля окружного угла и в этом положении частично погружают резонатор в травильный раствор, устанавливая удвоенный зенитный угол сферического сегмента обрабатываемой поверхности 2α, а затем проводят химическое травление в течение времени t. Технический результат - уменьшение времени и трудоемкости процесса балансировки кварцевых полусферических резонаторов по первым 4-м формам массового дефекта. 4 з.п. ф-лы, 1 ил.
1. Способ балансировки кварцевого полусферического резонатора волнового твердотельного гироскопа по предварительно определенным величинам параметров первых четырех форм массового дефекта резонатора, отличающийся тем, что кварцевый полусферический резонатор радиуса R устанавливают в положение, при котором ось его симметрии горизонтальна, а единый нуль окружного угла находится в нижнем положении, поворачивают резонатор вокруг оси симметрии на угол Δφ относительно единого нуля окружного угла и в этом положении частично погружают резонатор в травильный раствор, устанавливая удвоенный зенитный угол сферического сегмента обрабатываемой поверхности 2α, а затем проводят химическое травление в течение времени t.
2. Способ по п. 1, отличающийся тем, что при устранении 1-й формы массового дефекта величиной М1 и ориентацией φ1 устанавливают 2α=134°, Δφ=-φ1, причем время химического травления составляет t1=0,973М1/(R2ν), где ν - экспериментально определяемый постоянный коэффициент.
3. Способ по п. 1, отличающийся тем, что при устранении 2-й формы массового дефекта величиной М2 и ориентацией φ2 устанавливают 2α=104°,
4. Способ по п. 1, отличающийся тем, что при устранении 3-й формы массового дефекта величиной М3 и ориентацией φ3 устанавливают 2α=86°, Δφ=-φ3, проводят химическое травление в течение времени t3=0,422М3/(R2ν), затем дважды последовательно в одном направлении поворачивают резонатор на 120° вокруг оси симметрии и в каждом угловом положении проводят химическое травление в течение времени t3.
5. Способ по п. 1, отличающийся тем, что при устранении 4-й формы массового дефекта величиной М4 и ориентацией φ4 устанавливают величиной 2α=66°,
СПОСОБ БАЛАНСИРОВКИ ПОЛУСФЕРИЧЕСКОГО РЕЗОНАТОРА ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА | 1998 |
|
RU2147117C1 |
МАЛОГАБАРИТНЫЙ ТВЕРДОТЕЛЫЙ ВОЛНОВОЙ ГИРОСКОП | 2007 |
|
RU2362121C2 |
US 6282958 B1, 04.09.2001 | |||
US 20100154542 A1, 24.06.2010. |
Авторы
Даты
2016-04-10—Публикация
2014-12-09—Подача