Область техники, к которой относится изобретение
Изобретение относится к микромеханике, а именно к технологии изготовления микроэлектромеханических структур (МЭМС), и может быть использовано для изготовления трехмерных микромеханических структур на кремниевой пластине, например мембран с жестким центром.
Известен процесс микропрофилирования монокристаллического кремния ориентации (100) посредством анизотропного химического травления в системе едкое кали KОН - изопропиловый спирт (ИПС) С3Н2ОН - вода H2O, содержащей KОН: ИПС: H2O=32 г: 250 мл: 375 мл при температуре +80°С. При формировании мезаструктур или V-образных канавок в данном травителе происходит растравливание внешних углов. Для получения формы углов близкой к прямоугольной в рисунок фотошаблонов в вершинах внешних углов вводят защитные элементы в виде маскированного квадрата, центр которого совмещен с вершиной угла. Недостатком указанного способа является технологический разброс по толщине кремниевой пластины в пределах 5-15 мкм в местах расположения защитных фигур, обусловленный неполным стравливанием кремния под ними из-за большой площади последних, что отражается на характеристиках изготавливаемых микромеханических структур. Например, в случае формирования таким способом мембраны с жестким центром датчика давления, это приводит к снижению его чувствительности, определяемой номинальной толщиной мембраны, и ухудшению линейности преобразовательной характеристики. Готра З.Ю. Технология микроэлектронных устройств: Справочник. - М.: Радио и связь, 1991: илл., с. 397.
Наиболее близким к предлагаемому техническому решению является Патент Российской Федерации №2220475, МПК: H01L 21/308, 2003 г. «Способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100)». Кремниевую пластину с кристаллографической ориентацией (100) подвергают анизотропному травлению в водном растворе гидрооксида калия KОН. Способ включает формирование масочного рисунка с элементами защиты углов, примыкающими к исходной части топологической маски вблизи точки пересечения сторон защищаемого чипа или трехмерной микроструктуры на пластине и продолжающимися за пределы исходной части маски. Для защиты выпуклых углов чипа или трехмерной микроструктуры формируют масочный рисунок с элементами Т-образной формы, содержащей продольную и поперечную части, масочный рисунок с Т-образными элементами защиты выпуклых углов формируют из металлической структуры V-Cu′-Cu″, включающей тонкопленочную структуру ванадия и меди V-Cu′ и гальванический слой меди Cu″, а каждый из Т-образных элементов защиты выполняют в форме двух полосок - продольной вдоль кристаллографического направления [110] высотой В и поперечной шириной Ш, расположенной в поперечном направлении под прямым углом к продольной полоске. Травление проводят до тех пор, пока продольные кремниевые элементы, сформированные в области маски защиты углов в процессе анизотропного химического травления, не стравятся до границы исходной топологической области жесткого центра преобразователя, что соответствует моменту формирования правильного многоугольника в основании объемной фигуры жесткого центра, самосовмещения топологических слоев преобразователя и выхода на заданную глубину травления. В случае травления кремния в 33% растворе гидрооксида калия при температуре кипения для заданных интервалов отношений конструктивных параметров микромеханической структуры 0,44<b/a<0,73 и 30,6<h/a·103<36,6, размеры Т-образных элементов защиты выполняют в соотношениях как 5,1<В/Ш<9,1, где а - половина от размера стороны квадратной мембраны, b - половина от размера стороны квадратного основания жесткого центра, h - толщина мембраны.
Недостатками прототипа являются невозможность получения микромеханических структур или чипов в виде мембраны с жестким центром прямоугольной формы с размерами a/hTP<2,06 и b/hTP<1,65 для пластин толщиной до 480 мкм, где hTP - глубина травления кремниевой пластины, соответствующая толщине мембраны h. Это обусловлено тем, что при указанных размерах мембраны и жесткого центра суммарная длина Т-образных элементов защиты, определяемая как сумма высоты В продольной и ширины Ш поперечной полосок, из которых формируется Т-образный элемент, не позволяет разместить их на топологическом рисунке фотошаблона без взаимного наложения друг на друга и/или выхода за пределы внешнего контура мембраны. В итоге приходится искусственно уменьшать длину защитных элементов, что, в зависимости от конкретных размеров микромеханической структуры и режимов травления, приводит к значительному подтраву жесткого центра или вообще к полному его стравливанию. Подтрав жесткого центра применительно к первичным преобразователям физических величин в электрический сигнал, принцип действия которых основан на механических деформациях кремниевых мембран, например чувствительным элементам датчиков давления, вызывает существенное ухудшение линейности их преобразовательной характеристики и снижение нагрузочной способности. Указанные недостатки не позволяют в полной мере охватить имеющуюся номенклатуру трехмерных микромеханических структур или чипов, представляющих собой мембрану с жестким центром и формируемых методами жидкостного анизотропного травления, а также добиться ее расширения за счет варьирования размеров мембраны и жесткого центра.
Раскрытие изобретения
Основной задачей, на решение которой направлено настоящее изобретение, является расширение номенклатуры трехмерных микромеханических структур или чипов, представляющих собой мембрану с жестким центром и формируемых методами жидкостного анизотропного травления, улучшение линейности преобразовательной характеристики и повышение нагрузочной способности первичных преобразователей физических величин в электрический сигнал, в конструкции которых применяются объемные фигуры травления в форме трехмерных микромеханических структур с выпуклыми углами и правильными многоугольниками в основании фигуры травления.
Решение задачи достигается за счет того, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия KОН включает формирование масочного рисунка с элементами защиты углов, примыкающими к исходной части топологической маски вблизи точки пересечения сторон защищаемого чипа или трехмерной микроструктуры на пластине и продолжающимися за пределы исходной части маски. Для защиты выпуклых углов чипа или трехмерной микроструктуры формируют масочный рисунок с элементами Т-образной формы, которые содержат продольную и поперечную части. Травление проводят до тех пор, пока кремниевые элементы, сформированные в области маски защиты углов, не стравятся в процессе анизотропного химического травления до границы исходной топологической области жесткого центра микромеханической структуры. Продольные части двух соседних Т-образных элементов защиты перпендикулярны друг другу, причем размеры изготовляемых трехмерных микромеханических структур определяют из условий: a/hTP>0,8 и b/hTP>0,9, а параметры их изготовления назначают из соотношений p=(0,2…0,3)-hTP - ширина, - длина,
где а - половина от размера стороны квадратной мембраны,
b - половина от размера квадратной стороны жесткого центра,
hTP - глубина травления в направлении <100>,
V<100> - скорость травления кремния в направлении <100>, мкм/мин;
V1 - скорость травления Т-образного защитного элемента, мкм/мин.
Краткое описание чертежей
На Фиг. 1 показана конфигурация трехмерной микромеханической структуры, представляющей собой кремниевую мембрану с жестким центром правильной прямоугольной формы.
На Фиг. 2 показано поперечное сечение трехмерной микромеханической структуры в виде кремниевой мембраны с жестким центром правильной прямоугольной формы.
На Фиг. 3 показана схема размещения защитных элементов Т-образной формы и назначения их размеров/
На Фиг. 4 показаны графики зависимости скоростей травления V1 и V<100> монокристаллического кремния марки КЭФ n-типа проводимости (ρ=4,5 Ом·см) ориентации (100) от температуры в 33%-yом водном растворе гидрооксида калия KОН.
Осуществление изобретения
Для получения требуемой конфигурации трехмерной микромеханической структуры или чипа, представляющих собой кремниевую мембрану 1 с жестким центром 2 правильной прямоугольной формы (см. Фиг. 1 и Фиг. 2), ее внешние углы 3 на топологическом рисунке фотошаблона защищают элементами Т-образной формы 4, которые состоят из продольной 5 и поперечной 6 частей (см. Фиг. 3). Размеры Т-образных элементов 4 подбирают таким образом, чтобы обеспечить защиту внешних углов 3 жесткого центра 2 в течение всего процесса анизотропного химического травления, который начинается с углов 7 при вершинах Т-образных элементов 4 и распространяется геометрически подобно в направлении фронта травления 8. Расположение продольных частей двух соседних Т-образных элементов защиты 4 перпендикулярно друг другу позволяет существенно расширить номенклатуру трехмерных микромеханических структур.
На основании результатов большого числа экспериментальных исследований при разных режимах анизотропного травления на образцах с различными соотношениями основных геометрических параметров микромеханических структур и соответствующих размеров элементов защитной маски Т-образной формы 4 установлено, что микропрофилирование кремния происходит следующим образом. В начале процесса формирования трехмерной микромеханической структуры или чипа, представляющих собой кремниевую мембрану 1 с размером стороны 2а и толщиной h с жестким центром 2 с размером стороны 2b (см. Фиг. 1 и Фиг. 2), топологический рисунок которого на фотошаблоне защищен Т-образными элементами 4, происходит стравливание прямых углов 7 в вершинах Т-образных элементов 4 (см. Фиг. 3). Затем появляются плоскости, следы которых образуют между собой угол ≈30° в плоскости (100) и до окончания процесса травления перемещаются геометрически подобно. Огранка внешних углов происходит по плоскостям {111}, {100} и плоскостям, близким к {311}. У основания углов наблюдается выход плоскостей {110}.
В качестве маскирующего материала при анизотропном травлении кремния в водном растворе гидрооксида калия KОН применяют пленки, например, двуокиси кремния SiO2, нитрида кремния Si3N4 или металлической структуры V-Cu′-Cu″. Минимальные значения расстояний на топологической маске Wmin1 между поперечной частью 6 Т-образного элемента 4 и смежным с ней контуром мембраны 1, расположенным параллельно ей, Wmin2 между торцевым участком поперечной части 6 Т-образного элемента 4 и смежным с ним контуром мембраны 1, расположенным перпендикулярно поперечной части 6 Т-образного элемента 4 и Wmin3, между торцевым участком поперечной части 6 Т-образного элемента 4 и смежной с ним поперечной частью 6 соседнего Т-образного элемента 4 (см. Фиг. 3) определяются характеристиками оборудования, используемого для формирования защитной маски на поверхности кремниевой пластины и переноса на нее топологического рисунка фотошаблона. Для случая контактной фотолитографии они составляют 5…10 мкм.
Опытным путем установлено, что из-за бокового подтрава в направлении <111>, дефектов в маскирующем слое и локальных нарушений адгезии маски к кремниевой пластине узкие Т-образные элементы стравливаются задолго до окончания процесса травления, а защищаемый ими угол "заваливается". Избыточная ширина защитных элементов Т-образной формы приводит к образованию на мембране локальных утолщений в местах их расположения, поскольку их площадь напрямую зависит от ширины полоски. В случае чувствительного элемента датчика давления или ускорения такая неоднородность толщины мембраны может вызывать отклонение фактических значений чувствительности от расчетных.
В предлагаемом изобретении правильную прямоугольную форму трехмерной микромеханической структуры, представляющей собой кремниевую мембрану с жестким центром с размерами a/hTP>0,8 и b/hTP>0,9 (см. Фиг. 1 и Фиг. 2), получают при использовании защитных элементов Т-образной формы, размеры которых выбираются следующим образом. Оптимальная ширина р защитных элементов, позволяющая свести к минимуму локальные утолщения мембраны в местах их расположения (см. Фиг. 3) и одновременно обеспечить защиту внешнего угла в течение всего процесса травления кремния, составляет 0,2…0,3 от глубины травления hTP. Длина Т-образного элемента qΣ рассчитывается по выведенной на основании математической обработки многочисленных экспериментальных данных формуле
где q1 - длина продольной части Т-образного защитного элемента;
q2 - длина поперечной части Т-образного защитного элемента;
hTP - глубина травления кремния, мкм;
V<100>- скорость травления кремния в направлении<100>, мкм/мин;
V1 - скорость травления Т-образного защитного элемента, мкм/мин.
Скорость травления Т-образного элемента V1 определяется типом проводимости кремниевой пластины, температурой и концентрацией травителя. Абсолютные и относительные (приведенные к скорости V<100>) значения скорости травления V1 для монокристаллического кремния марки КЭФ n-типа проводимости (ρ=4,5 Ом·см) ориентации (100) при травлении в 33%-yом водном растворе гидрооксида калия KОН получены опытным путем и представлены в таблице 1 и на Фиг. 4.
Способ защиты углов трехмерных микромеханических структур позволяет получить внешние углы с формой, максимально приближенной к прямоугольной, в широком диапазоне размеров мембраны а, жесткого центра b и толщин мембран h, удовлетворяющих условию a/hTP>0,8 и b/hTP>0,9, для пластин толщиной до 480 мкм.
Заявляемый способ изобретения апробирован при изготовлении кремниевых чувствительных элементов давления с размерами мембраны 2а=1,1 мм и жесткого центра 2b=0,75…0,9 мм в диапазоне толщин мембран h=40…200 мкм (глубина травления hTP=440…180 мкм) для пластин толщиной 380, 420 и 480 мкм, что соответствует соотношениям a/hTP=1,53…1,25 и b/hTP=1,32…0,9. Его использование позволяет получать мембраны с жестким центром без снижения запаса прочности с нелинейностью преобразовательной характеристики не более 0,2% и совпадением фактических значений чувствительности с расчетными более 90%, что физически не возможно в случае способа защиты углов, предложенном в прототипе, из-за существующих в нем ограничений в виде условий a/hTP>2,06 и b/hTP>l,65.
название | год | авторы | номер документа |
---|---|---|---|
Способ защиты углов кремниевых микромеханических структур при анизотропном травлении | 2017 |
|
RU2667327C1 |
СПОСОБ ЗАЩИТЫ УГЛОВ ТРЕХМЕРНЫХ МИКРОМЕХАНИЧЕСКИХ СТРУКТУР НА КРЕМНИЕВОЙ ПЛАСТИНЕ ПРИ ГЛУБИННОМ АНИЗОТРОПНОМ ТРАВЛЕНИИ | 2014 |
|
RU2568977C1 |
СПОСОБ ЗАЩИТЫ УГЛОВ ТРЕХМЕРНЫХ МИКРОМЕХАНИЧЕСКИХ СТРУКТУР НА КРЕМНИЕВОЙ ПЛАСТИНЕ ПРИ ГЛУБИННОМ АНИЗОТРОПНОМ ТРАВЛЕНИИ | 2002 |
|
RU2220475C1 |
СПОСОБ КОМПЕНСАЦИИ РАСТРАВА ВНЕШНИХ УГЛОВ ФИГУР ТРАВЛЕНИЯ НА КРЕМНИЕВЫХ ПЛАСТИНАХ С ОРИЕНТАЦИЕЙ ПОВЕРХНОСТИ (100) | 2006 |
|
RU2331137C1 |
ТЕПЛОВОЙ МИКРОМЕХАНИЧЕСКИЙ АКТЮАТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2010 |
|
RU2448896C2 |
Двунаправленный тепловой микромеханический актюатор и способ его изготовления | 2015 |
|
RU2621612C2 |
Способ изготовления интегральных преобразователей | 2018 |
|
RU2698486C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ УПРУГОГО ЭЛЕМЕНТА МИКРОМЕХАНИЧЕСКОГО УСТРОЙСТВА | 2014 |
|
RU2580910C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КАНТИЛЕВЕРА СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА | 2007 |
|
RU2335033C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОСТАТИЧЕСКОГО СИЛОВОГО МЭМС КЛЮЧА | 2013 |
|
RU2527942C1 |
Использование: для изготовления трехмерных микромеханических структур на кремниевой пластине. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия KОН включает формирование масочного рисунка с элементами защиты углов, примыкающими к исходной части топологической маски вблизи точки пересечения сторон защищаемого чипа или трехмерной микроструктуры на пластине и продолжающимися за пределы исходной части маски, при котором для защиты выпуклых углов чипа или трехмерной микроструктуры формируют масочный рисунок с элементами Т-образной формы, содержащей продольную и поперечную части, причем травление проводят до тех пор, пока кремниевые элементы, сформированные в области маски защиты углов, не стравятся в процессе анизотропного химического травления до границы исходной топологической области жесткого центра микромеханической структуры, продольные части двух соседних Т-образных элементов защиты перпендикулярны друг другу, причем размеры изготовляемых трехмерных микромеханических структур определяют из определенных условий. Технический результат: обеспечение возможности расширения номенклатуры трехмерных микромеханических структур или чипов, улучшения линейности преобразовательной характеристики и повышения нагрузочной способности первичных преобразователей. 4 ил., 1 табл.
Способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия KОН, включающий формирование масочного рисунка с элементами защиты углов, примыкающими к исходной части топологической маски вблизи точки пересечения сторон защищаемого чипа или трехмерной микроструктуры на пластине и продолжающимися за пределы исходной части маски, при котором для защиты выпуклых углов чипа или трехмерной микроструктуры формируют масочный рисунок с элементами Т-образной формы, содержащей продольную и поперечную части, причем травление проводят до тех пор, пока кремниевые элементы, сформированные в области маски защиты углов, не стравятся в процессе анизотропного химического травления до границы исходной топологической области жесткого центра микромеханической структуры, отличающийся тем, что продольные части двух соседних Т-образных элементов защиты перпендикулярны друг другу, причем размеры изготовляемых трехмерных микромеханических структур определяют из условий: a/hTP>0,8 и b/hTP>0,9, а параметры их изготовления назначают из соотношений p=(0,2…0,3)·hTP - ширина,
где а - половина от размера стороны квадратной мембраны,
b - половина от размера квадратной стороны жесткого центра,
hTP - глубина травления в направлении <100>,
V<100> - скорость травления кремния в направлении <100>, мкм/мин;
V1 - скорость травления Т-образного защитного элемента, мкм/мин.
Ушков А.В., Исакова Г.А., Рябов В.Т., Разработка методики компенсации выпуклых углов при формировании мембраны чувствительного элемнта давления с жестким центром в водном растворе KOH, Нано- и микросистемная техника, N 6, 2007 | |||
Ушков А.В., Разработка конструктивно-технологических методов производства кремниевых чувствительных элементов давления с |
Авторы
Даты
2016-04-27—Публикация
2015-02-25—Подача