Изобретение относится к методам и средствам автоматического управления сельскохозяйственными технологическими процессами и может быть использовано для автоматизации управления температурным режимом теплиц.
Известны (Патент РФ №2128425, МПК: A01G 9/24, G05D 23/00, 1994 г. ) способы автоматического управления температурным режимом теплиц, включающие измерение текущих значений температуры воздуха в теплице, сравнение их с оптимальным значением температуры воздуха в теплице, после чего сигнал результата сравнения усиливают, интегрируют, дифференцируют и подают на регулирующий орган, реализуя тем самым пропорционально-интегрально-дифференциальный (ПИД) закон управления (кн. И.Ф. Бородин, Ю.А. Судник. Автоматизация технологических процессов. М.: КолосС, 2003, с. 58-59).
Недостатками ПИД-регуляторов являются низкие быстродействие и помехоустойчивость, связанные с наличием единственной производной по времени в законе управления. Использование производных выше первого порядка приводит к резкому возрастанию влияния шумов и помех, что существенно снижает качество автоматического управления.
Дробное дифференцирование (Самко С.Г., Калбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. - 688 с.) позволяет усилить присущий операциям дифференцирования по времени эффект предсказания дальнейшего изменения сигналов управляемых технологических процессов и благодаря этому повысить быстродействие управляющих ими систем. При этом не повышаются в выходных сигналах регулятора уровни шумов и помех, по сравнению с традиционным ПИД-регулятором, т.к. в предлагаемом техническом решении максимальный порядок дифференцирования меньше (производные дробных порядков меньше единицы), чем у известного ПИД-регулятора.
Техническим результатом предлагаемого изобретения является повышение качества управления, в частности быстродействия и помехоустойчивости систем автоматического управления.
Такой технический результат достигается тем, что способ автоматического управления температурным режимом теплицы, включающий измерение текущих значений температуры воздуха в теплице, сравнение их с оптимальным значением температуры воздуха в теплице, после чего сигнал результата сравнения усиливают, интегрируют, дифференцируют и подают на регулирующий орган, причем дифференцирование сигнала результата сравнения осуществляют дробными производными посредством регулятора повышенного быстродействия, содержащего два параллельно включенных звена, одно из которых реализует функцию ПИД-регулятора, а другое является дополнительным, которое реализует функцию дробного дифференцирования сигнала по времени, при этом передаточную функцию регулятора определяют по следующей зависимости
Wрег(s)=WПИД(s)+WДП 1(s)+WДП 2(s),
где s - комплексная переменная,
WПИД(s) - передаточная функция ПИД-регулятора,
и , а
Q1 и Q2 - параметры настройки регулятора.
Суть способа заключается в следующем. Известная передаточная функция ПИД-регулятора WПИД(s) имеет следующий вид:
где s - комплексная переменная; Kp - коэффициент передачи регулятора; ТД и ТИ - постоянные времени дифференцирования и интегрирования по времени соответственно.
Поскольку в (1) первой производной по времени d(…)/dt отвечает комплексная переменная s, то дробным производным по времени ниже первого порядка будут отвечать комплексные переменные вида , n и m - целые положительные числа, причем m<n.
При этом передаточная функция регулятора с дробными производными по времени может быть представлена в виде
где
причем N - целое положительное число, при этом N≥1; Q1 и Q2 - параметры настройки, принимающие вещественные значения.
Таким образом, как видно из (2) и (3), введение дробных производных по времени ниже первого порядка позволяет использовать дополнительные параметры настройки Q1 и Q2 для повышения быстродействия, т.к. благодаря их наличию улучшается управляемость системы, что позволяет добиться, к тому же, значительного повышения запаса устойчивости системы. Качество управления автоматической системы при замене известного ПИД-регулятора на регулятор нового вида (2), (3), повышается в той же мере, как при замене пропорционально-интегрального регулятора на ПИД-регулятор.
Способ реализуется следующим образом. Регулятор повышенного быстродействия содержит два параллельно включенных звена, одно из которых реализует функцию ПИД-регулятора, а другое является дополнительным, которое реализует функцию дробного дифференцирования сигнала по времени (различных порядков меньших единицы).
Способ позволяет повысить быстродействие и помехоустойчивость систем автоматического управления.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕГУЛИРОВАНИЯ ЧАСТОТЫ ВРАЩЕНИЯ РОТОРА РЕАКТИВНОЙ ГИДРАВЛИЧЕСКОЙ ТУРБИНЫ И ПИД-РЕГУЛЯТОР ЧАСТОТЫ ВРАЩЕНИЯ СИЛЬНОГО ДЕЙСТВИЯ | 2021 |
|
RU2781087C1 |
СПОСОБ АДАПТИВНОГО УПРАВЛЕНИЯ ПО ПИД-ЗАКОНУ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2012 |
|
RU2510956C2 |
СПОСОБ УПРАВЛЕНИЯ КОМПРЕССОРАМИ ГРУППЫ КОМПРЕССОРНЫХ УСТАНОВОК В СОСТАВЕ КОМПРЕССОРНОГО УЧАСТКА | 2021 |
|
RU2784265C1 |
НЕЛИНЕЙНАЯ АДАПТИВНАЯ СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ | 2004 |
|
RU2267147C1 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА ПОСТОЯННОГО ТОКА С УСТРОЙСТВОМ ФОРМИРОВАНИЯ КОММУТИРУЮЩЕГО ПОЛЯ | 1996 |
|
RU2119224C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ТОЧКИ РОСЫ ГАЗА И УСТРОЙСТВО ДЛЯ ЕГО АВТОМАТИЧЕСКОГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2290628C1 |
СИСТЕМА С ОБРАТНОЙ СВЯЗЬЮ | 2013 |
|
RU2541684C1 |
СИСТЕМА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ДИНАМИЧЕСКОЙ ХАРАКТЕРИСТИКОЙ ВЫХОДНОГО ПАРАМЕТРА | 2005 |
|
RU2292575C2 |
ТЕРМОННЫЙ РЕГУЛЯТОР | 1992 |
|
RU2017200C1 |
СИСТЕМА С ОБРАТНОЙ СВЯЗЬЮ | 2015 |
|
RU2584925C1 |
Изобретение относится к методам и средствам автоматического управления сельскохозяйственными технологическими процессами и может быть использовано для автоматизации управления температурным режимом теплиц. Способ включает измерение текущих значений температуры воздуха в теплице, сравнение их с оптимальным значением температуры воздуха в теплице, после чего сигнал результата сравнения усиливают, интегрируют, дифференцируют и подают на регулирующий орган. Дифференцирование сигнала результата сравнения осуществляют дробными производными посредством регулятора повышенного быстродействия. Регулятор повышенного быстродействия содержит два параллельно включенных звена, одно из которых реализует функцию ПИД-регулятора, а другое является дополнительным, которое реализует функцию дробного дифференцирования сигнала по времени. Передаточную функцию регулятора определяют по следующей зависимости
Wрег(s)=WПИД(s)+WДП 1(s)+WДП 2(s),
где s - комплексная переменная,
WПИД(s) - передаточная функция ПИД-регулятора,
и
, а
Q1 и Q2 - параметры настройки регулятора.
Способ позволит повысить быстродействие и помехоустойчивость систем автоматического управления.
Способ автоматического управления температурным режимом теплицы, включающий измерение текущих значений температуры воздуха в теплице, сравнение их с оптимальным значением температуры воздуха в теплице, после чего сигнал результата сравнения усиливают, интегрируют, дифференцируют и подают на регулирующий орган, отличающийся тем, что дифференцирование сигнала результата сравнения осуществляют дробными производными посредством регулятора повышенного быстродействия, содержащего два параллельно включенных звена, одно из которых реализует функцию ПИД-регулятора, а другое является дополнительным, которое реализует функцию дробного дифференцирования сигнала по времени, при этом передаточную функцию регулятора определяют по следующей зависимости
Wрег(s)=WПИД(s)+WДП 1(s)+WДП 2(s),
где s - комплексная переменная,
WПИД(s) - передаточная функция ПИД-регулятора,
и , а
Q1 и Q2 - параметры настройки регулятора.
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕМПЕРАТУРНЫМ РЕЖИМОМ В ТЕПЛИЦЕ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2128425C1 |
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕМПЕРАТУРНО-СВЕТОВЫМ РЕЖИМОМ В ТЕПЛИЦЕ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2009 |
|
RU2405308C1 |
Способ автоматического управления температурным режимом в теплице | 1984 |
|
SU1438657A1 |
УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ТЕПЛИЦЕ | 1994 |
|
RU2057430C1 |
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕМПЕРАТУРНЫМ РЕЖИМОМ В ТЕПЛИЦЕ | 1992 |
|
RU2049380C1 |
WO 2011071511 A1, 16.06.2011. |
Авторы
Даты
2016-07-10—Публикация
2014-10-06—Подача