СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ ИСТРЕБИТЕЛЕМ В ГОРИЗОНТАЛЬНОЙ ПЛОСКОСТИ ПРИ ЕГО БЛИЖНЕМ НАВЕДЕНИИ НА ГРУППОВУЮ ВОЗДУШНУЮ ЦЕЛЬ Российский патент 2016 года по МПК F41G7/22 

Описание патента на изобретение RU2593911C1

Изобретение относится к области радиоуправления и может быть использовано в радиоэлектронных системах радиоуправления (РЭУ) при ближнем наведении истребителя в наивыгоднейшую упрежденную точку встречи на групповую воздушную цель (ГВЦ) с дополнительным созданием условия для обеспечения требуемого линейного разрешения целей в группе в бортовой радиолокационной станции (БРЛС) истребителя за счет эффекта радиолокационного синтезирования апертуры (РСА) антенны.

Известен способ формирования сигнала управления истребителем в горизонтальной плоскости при его наведении в наивыгоднейшую упрежденную точку встречи на одиночную воздушную цель, в соответствии с которым параметр рассогласования Δχг в горизонтальной плоскости определяется, как

где

χг и χгт - соответственно фактический и требуемый углы упреждения продольного полета истребителя в горизонтальной плоскости;

ψи и ψит - соответственно фактический и требуемый курсы полета истребителя;

εг - угол пеленга цели в горизонтальной плоскости [1].

Недостатком данного способа формирования сигнала управления истребителем в горизонтальной плоскости при его наведении в наивыгоднейшую упрежденную точку встречи является невозможность обеспечить такое наведение истребителя на групповую воздушную цель, при котором создавались бы дополнительное условие для обеспечения требуемого линейного разрешения целей в группе в БРЛС истребителя при его наведении на ГВЦ.

Известен способ формирования сигнала управления истребителем в горизонтальной плоскости при его ближнем наведении на групповую воздушную цель в наивыгоднейшую упрежденную точку встречи, заключающийся в формировании сигнала управления истребителем в горизонтальной плоскости Δг с дальности, при достижении которой истребителем осуществляется пуск с его борта ракеты, до дальности, при достижении которой истребителем пущенная с его борта ракета встретится с целью, в соответствии с выражением

где

к1 - коэффициент пропорциональности;

φг - текущее значение наивыгоднейшего угла упреждения в горизонтальной плоскости;

Д - дальность до групповой воздушной цели;

ωг - угловая скорость вращения линии визирования «истребитель - групповая воздушная цель» в горизонтальной плоскости;

Vсбл - скорость сближения истребителя с групповой воздушной целью;

Vp и tp - соответственно скорость и время полета ракеты [2].

Недостатком данного способа формирования сигнала управления истребителем в горизонтальной плоскости является невозможность с его помощью обеспечить такое ближнее наведения истребителя на групповую воздушную цель в соответствии с методом, оптимальным по критерию минимума локального функционала качества при полете истребителя в наивыгоднейшую упрежденную точку встречи, при котором дополнительно создавалось бы условие и для обеспечения требуемого линейного разрешения целей в группе в БРЛС истребителя на основе эффекта PC А антенны.

Цель изобретения - в процессе ближнего наведения истребителя в горизонтальной плоскости на групповую воздушную цель в наивыгоднейшую упрежденную точку встречи в соответствии с методом, оптимальным по критерию минимума локального функционала качества, дополнительно создать условие для обеспечения в его БРЛС требуемого линейного разрешения целей в группе на основе эффекта РСА антенны.

Указанная цель достигается тем, что в способе формирования сигнала управления истребителем в горизонтальной плоскости при его ближнем наведении на групповую воздушную цель, заключающемся в том, что с дальности, при достижении которой истребителем осуществляется пуск с его борта ракеты, до дальности, при достижении которой истребителем пущенная с его борта ракета встретится с целью, формируется сигнал управления истребителем в соответствии с выражением (4), а с дальности захвата ГВЦ бортовой радиолокационной станцией на сопровождение по дальности, скорости, угловым координатам и их производным, до дальности, при достижении которой истребителем осуществляется пуск ракеты, сигнал Δ Г * управления истребителем формируется в соответствии выражением

где

kΔφ - динамический коэффициент усиления;

w - коэффициент штрафа на точность слежения за текущим значением угла между линией визирования «истребитель - групповая воздушная цель» и вектором скорости полета истребителя;

k - коэффициент штрафа на величину сигнала управления

φтр - требуемый угол отклонения вектора скорости полета истребителя от линии визирования «истребитель - групповая воздушная цель»;

ΔL - требуемое линейное разрешение целей в группе;

Vгвц и Vи - соответственно продольные составляющие скоростей полета групповой воздушной цели и истребителя;

q - угол между линией визирования «истребитель - групповая воздушная цель» и вектором скорости полета групповой воздушной цели;

λ и Δf - соответственно рабочая длина волны бортовой радиолокационной станции истребителя и ширина полосы пропускания узкополосного доплеровского фильтра в измерителе скорости бортовой радиолокационной станции.

Новыми признаками, обладающими существенными отличиями, являются:

1. Формирование в соответствии с выражениям (6), (7) и (8) сигнала управления истребителем в горизонтальной плоскости при его ближнем наведении с дальности захвата ГВЦ бортовой радиолокационной станцией на сопровождение по дальности, скорости, угловым координатам и их производным, до дальности, при достижении которой истребителем осуществляется пуск с его борта ракеты, в соответствии с методом, оптимальным по критерию минимума локального функционала качества для обеспечения в его БРЛС истребителя требуемого линейного разрешения целей в группе на основе эффекта РСА антенны.

2. Последовательное использование двух способов формирования сигналов управления истребителем в горизонтальной плоскости при его ближнем наведении в наивыгоднейшую упрежденную точку встречи в соответствии с методом, оптимальным по критерию минимума локального функционала качества с дополнительным созданием условия для обеспечения в БРЛС истребителя требуемого линейного разрешения целей в группе, определяемого выражением (6), и в дальнейшем, при ближнем наведении истребителя также в наивыгоднейшую упрежденную точку встречи, определяемого выражением (4).

Данные признаки обладают существенными отличиями, т.к. в известных способах не обнаружены.

Применение новых признаков позволит сформировать такой сигнал управления истребителем, который, во-первых, в процессе ближнего наведения истребителя в наивыгоднейшую упрежденную точку встречи в горизонтальной плоскости на ГВЦ в соответствии с методом, оптимальным по критерию минимума локального функционала качества, дополнительно создаст условие для обеспечения в БРЛС истребителя требуемого линейного разрешения целей в группе на основе эффекта РСА антенны и, во-вторых, обеспечит наведение истребителя в наивыгоднейшую упрежденную точку встречи для успешного пуска ракеты по назначенной для поражения цели из состава их группы.

На рис. 1 приведена динамическая структурная схема РЭСУ истребителем при его ближнем наведении в горизонтальной плоскости, поясняющая предлагаемый способ формирования сигнала управления истребителем во взаимодействии с известным [2] (страница 343, рисунок 15.5 - элементы РЭСУ: кинематическое звено, формула (15.27) на странице 341; угломер; формирователь сигнала управления истребителем Δг, формула (4) описания изобретения); формирователь сигнала Δр траекторного управления по крену, формула (15.30) на странице 342); система автоматического управления (САУ); объект управления (истребитель) с их связями), куда дополнительно введены вычислитель требуемого угла отклонения вектора скорости полета истребителя от линии визирования «истребитель - групповая воздушная цель» (формула (8) описания изобретения), коммутатор, формирователь сигнала управления истребителем (формула (6) описания изобретения) с их связями.

На рисунке 2 представлена геометрия взаимного перемещения истребителя и групповой воздушной цели, состоящей из двух целей Ц1 и Ц2.

На рисунках 3 и 4 представлены результаты моделирования РЭСУ истребителем с предлагаемым способом формирования сигнала управления.

Способ формирования сигнала управления истребителем в горизонтальной плоскости при его ближнем наведении на групповую воздушную цель в составе контура РЭСУ реализуется следующим образом (рисунок 1).

С помощью кинематического звена 1 (рисунок 1) осуществляется связь фазовых координат собственного полета истребителя (поперечного ускорения Jг и курса Ψ истребителя) и ГВЦ (поперечного ускорения Jгвц) в горизонтальной плоскости. В результате на входы угломера 2 поступают значения угла εг пеленга ГВЦ и текущего значения наивыгоднейшего угла φг упреждения в горизонтальной плоскости (рисунок 2). В вычислителе 3 (рисунок 1) на основе поступающих на его входы значений дальности Дз захвата ГВЦ бортовой радиолокационной станцией на сопровождение по дальности, скорости, угловым координатам и их производным, скорости сближения Vcбл истребителя с ГВЦ, радиальной составляющей скорости Vи полета истребителя, (рисунок 2) значения требуемого линейного разрешения ΔL целей в группе и угла q между линией визирования «истребитель - групповая воздушная цель» и вектором скорости полета ГВЦ, в соответствии с выражением (8) вычисляется требуемый угол φтр между линией визирования «истребитель - групповая воздушная цель» и вектором скорости полета истребителя, который (угол φтр) необходимо постоянно поддерживать в процессе его ближнего наведения в наивыгоднейшую упрежденную точку встречи на ГВЦ по методу, оптимальному по критерию минимума локального функционала качества при его полете для дополнительного создания условия для обеспечения в БРЛС истребителя требуемого линейного разрешения ΔL целей в группе на основе эффекта РСА антенны. Значение этого угла φтр поступает (рисунок 1) на вход формирователя 4 сигнала управления истребителем, куда также поступают значения угла φг, скорости сближения Vcбл истребителя с ГВЦ и отношение весовых коэффициентов w/k. В результате на выходе формирователя 4 в соответствии с выражением (6) формируется сигнал управления истребителем в горизонтальной плоскости, который поступает на вход коммутатора 5, куда дополнительно поступают значения (рисунок 2) дальности Дпр, при достижении которой истребителем осуществляется пуск с его борта ракеты по назначенной для атаки цели из состава группы, дальности Дз, дальности окончания ближнего наведения Дон (дальности, при достижении которой истребителем пущенная с его борта ракета встретится с назначенной для атаки целью из состава группы), (рисунок 1) сигнал управления Δг истребителем в горизонтальной плоскости, формируемый на выходе формирователя 6 сигнала управления истребителем в соответствии с выражением (4) на основе поступающих на его входы сигналов φг, угловой скорости ωг вращения линии визирования «истребитель - групповая воздушная цель» в горизонтальной плоскости, дальности Дпр и скорости сближения Vcбл. На выходе коммутатора 5 первоначально, при выполнении условия Дзпр, формируется сигнал управления истребителем в горизонтальной плоскости, который поступает на вход формирователя 7 сигнала траекторного управления истребителем по крену, куда также поступает текущее значение крена истребителя с выхода динамического звена 8, описывающего объект управления (истребитель). В результате на выходе формирователя 7 формируется сигнал Δр траекторного управления истребителем в горизонтальной плоскости ([2], страница 342, формула (15.30) для обеспечения его ближнего наведения в наивыгоднейшую упрежденную точку встречи на ГВЦ по методу, оптимальному по критерию минимума локального функционала качества с дополнительным созданием условия для обеспечения в БРЛС истребителя требуемого линейного разрешения ΔL целей в группе на основе эффекта РСА антенны. На основе сигнала Δр в САУ 9 вырабатывается сигнал δэ управления элеронами истребителя 8 для его управления в горизонтальной плоскости. Собственное поперечное ускорение Jг и курс Ψ истребителя с выхода динамического звена, описывающего истребитель 8, поступают на входы кинематического звена 1, замыкая тем самым контур ближнего наведения истребителя в горизонтальной плоскости в наивыгоднейшую упрежденную точку встречи с дополнительным созданием условия для обеспечения в его БРЛС требуемого линейного разрешения ΔL целей в группе на основе эффекта РСА антенны. Для обеспечения устойчивости и управляемости работы РЭСУ истребителем в САУ 9 вводится корректирующий сигнал ωх.

При достижении истребителем (рисунок 2) дальности пуска ракеты (Дзпр) на выходе коммутатора 5 (рисунок 1) будет сформирован сигнал управления истребителем Δг (выражение (4), в результате чего на выходе формирователя 7 будет сформирован сигнал траекторного управления истребителем по крену в горизонтальной плоскости, переводящий его в режим ближнего наведения только в наивыгоднейшую упрежденную точку встречи.

При достижении истребителем дальности (рисунок 2), при достижении которой произойдет встреча пущенной с его борта ракеты с назначенной для атаки целью из состав группы (выполнении условия Дзон), на выходе коммутатора 5 (рисунок 2) не будет формироваться ни один из двух сигналов управления Δг или что приведет к размыканию контура ближнего наведения истребителя и выходу его из процесса ближнего наведения (выходу из атаки).

С целью оценки работоспособности предлагаемого способа формирования сигнала управления истребителем было проведено его моделирование в составе динамической структурной схемы РЭСУ истребителем в горизонтальной плоскости. При моделировании были приняты следующие исходные данные (рисунок 2):

количество целей в группе - 2;

требуемое линейное разрешение целей в группе ΔL=150 м;

начальная дальность до ГВЦ Д(0)=250 км;

радиальная составляющая скорости полета ГВЦ Vгвц=300 м/с;

радиальная составляющая скорости полета истребителя Vи=300 м/с;

начальный угол между линией визирования «истребитель - групповая воздушная цель» и вектором скорости полета ГВЦ q (0)=0 град.; рабочая длина волны БРЛС истребителя λ=3 см;

ширина полосы пропускания узкополосного доплеровского фильтра в канале измерения скорости сближения истребителя с ГВЦ Δf=10 Гц;

отношение коэффициентов штрафа -

В результате моделирования установлено, что к 15-й секунде ближнего наведения истребителя (рисунок 3) с помощью РЭСУ с введенным в нее способом формирования сигнала управления истребителем полностью отрабатывается требуемый угол φтр отклонения вектора скорости полета истребителя от линии визирования «истребитель - групповая воздушная цель», при этом обеспечивается (рисунок 4) требуемое линейное разрешение целей в группе ΔL=150 м.

Таким образом, предлагаемый способ формирования сигнала управления истребителем в горизонтальной плоскости при его ближнем наведении на групповую воздушную цель в наивыгоднейшую упрежденную точку встречи в соответствии с методом, оптимальным по критерию минимума локального функционала качества, позволит дополнительно создать условие для обеспечения в его БРЛС требуемого линейного разрешения целей в группе на основе эффекта радиолокационного синтезирования апертуры антенны.

Источники информации

1. Радиоэлектронные комплексы навигации, прицеливания и управления вооружением летательных аппаратов. Т. 2. Применение авиационных радиоэлектронных комплексов при решении боевых и навигационных задач / Под ред. М.С. Ярлыкова. - М.: Радиотехника, 2012 (страница 104, формула (2.44), (аналог).

2. Авиационные системы радиоуправления. Т. 2. Радиоэлектронные системы самонаведения / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: «Радиотехника», 2003 (страница 18, формула (7.6); страница 20, формула (7.16), (прототип).

Похожие патенты RU2593911C1

название год авторы номер документа
СПОСОБ И СИСТЕМА ОПРЕДЕЛЕНИЯ НАИБОЛЕЕ БЛАГОПРИЯТНЫХ ДЛЯ АТАКИ ВОЗДУШНЫХ ЦЕЛЕЙ В РЕЖИМЕ МНОГОЦЕЛЕВОГО СОПРОВОЖДЕНИЯ 2020
  • Верба Владимир Степанович
  • Меркулов Денис Александрович
  • Садовский Петр Алексеевич
  • Иевлев Даниил Игоревич
RU2743479C1
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ РАКЕТОЙ 2006
  • Богданов Александр Викторович
  • Белый Юрий Иванович
  • Голубенко Валентин Александрович
  • Киселёв Владимир Васильевич
  • Кучин Александр Александрович
  • Маняшин Сергей Михайлович
  • Нечаев Юрий Валентинович
  • Пекарш Александр Иванович
  • Синицын Андрей Викторович
  • Филонов Андрей Александрович
RU2335730C2
СПОСОБ ИНДИВИДУАЛЬНОГО НАВЕДЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА НА ВОЗДУШНУЮ ЦЕЛЬ В СОСТАВЕ ПЛОТНОЙ ГРУППЫ 2020
  • Верба Владимир Степанович
  • Загребельный Илья Русланович
  • Меркулов Денис Александрович
  • Миляков Денис Александрович
RU2742626C1
СПОСОБ ПЕРЕХВАТА ПРИОРИТЕТНОЙ ЦЕЛИ, ОБЕСПЕЧИВАЮЩИЙ СРЫВ НАВЕДЕНИЯ ИСТРЕБИТЕЛЕЙ СОПРОВОЖДЕНИЯ 2020
  • Верба Владимир Степанович
  • Меркулов Владимир Иванович
  • Загребельный Илья Русланович
  • Иевлев Даниил Игоревич
  • Миляков Денис Александрович
RU2742737C1
СПОСОБ САМОНАВЕДЕНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ НА ГИПЕРЗВУКОВЫЕ ЦЕЛИ 2009
  • Верба Владимир Степанович
  • Гандурин Виктор Александрович
  • Забелин Игорь Владимирович
  • Меркулов Владимир Иванович
  • Миляков Денис Александрович
RU2408847C1
ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА БЕСПИЛОТНОГО САМОЛЕТА-ИСТРЕБИТЕЛЯ 2010
  • Верба Владимир Степанович
  • Гандурин Виктор Александрович
  • Меркулов Владимир Иванович
  • Миляков Денис Александрович
RU2418267C1
СПОСОБ РАНЖИРОВАНИЯ ЦЕЛЕЙ 2000
  • Дрогалин В.В.
  • Канащенков А.И.
  • Меркулов В.И.
  • Самарин О.Ф.
  • Старостин В.В.
  • Францев В.В.
  • Чернов В.С.
RU2190863C2
Способ распознавания направления самонаведения пущенной по группе самолётов ракеты с радиолокационной головкой самонаведения 2015
  • Анциферов Александр Анатольевич
  • Богданов Александр Викторович
  • Коротков Сергей Сергеевич
  • Филонов Андрей Александрович
RU2609530C1
СПОСОБ НАВЕДЕНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ НА НАЗЕМНЫЕ ОБЪЕКТЫ 1999
  • Курилкин В.В.
  • Меркулов В.И.
  • Шуклин А.И.
RU2164654C2
Способ совместного функционирования бортовых радиолокационных станций и станций активных помех при распределении задач поражения и прикрытия между истребителями пары 2022
  • Закомолдин Денис Викторович
  • Богданов Александр Викторович
  • Часовских Сергей Александрович
  • Рыльцин Игорь Александрович
RU2789849C1

Иллюстрации к изобретению RU 2 593 911 C1

Реферат патента 2016 года СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ ИСТРЕБИТЕЛЕМ В ГОРИЗОНТАЛЬНОЙ ПЛОСКОСТИ ПРИ ЕГО БЛИЖНЕМ НАВЕДЕНИИ НА ГРУППОВУЮ ВОЗДУШНУЮ ЦЕЛЬ

Изобретение относится к области радиоуправления и может быть использовано в радиоэлектронных системах радиоуправления при ближнем наведении истребителя в наивыгоднейшую, упрежденную точку встречи, на групповую воздушную цель (ГВЦ) с дополнительным созданием условия для обеспечения требуемого линейного разрешения целей в группе в бортовой радиолокационной станции истребителя за счет эффекта радиолокационного синтезирования апертуры антенны. Технический результат - в процессе ближнего наведения истребителя в горизонтальной плоскости на групповую воздушную цель (ГВЦ) в наивыгоднейшую упреждающую точку встречи создать условия для обеспечения в его бортовой радиолокационной системе (БРЛС) требуемого линейного разрешения целей в группе на основе эффекта радиолокационного синтеза апертуры (РСА). 4 ил.

Формула изобретения RU 2 593 911 C1

Способ формирования сигнала управления истребителем в горизонтальной плоскости при его ближнем наведении на групповую воздушную цель, заключающийся в формировании сигнала Δ Г управления истребителем в горизонтальной плоскости с дальности, при достижении которой истребителем осуществляется пуск с его борта ракеты, до дальности, при достижении которой истребителем пущенная с его борта ракета встретится с целью, в соответствии с выражением

где

кi - коэффициент пропорциональности;
φг - текущее значение наивыгоднейшего угла упреждения в горизонтальной плоскости;
Д - дальность до групповой воздушной цели;
ωг - угловая скорость вращения линии визирования «истребитель - групповая воздушная цель» в горизонтальной плоскости;
Vсбл - скорость сближения истребителя с групповой воздушной целью;
Vp и tp - соответственно скорость и время полета ракеты,
отличающийся тем, что с дальности захвата групповой воздушной цели бортовой радиолокационной станцией на сопровождение по дальности, скорости, угловым координатам и их производным, до дальности, при достижении которой истребителем осуществляется пуск с его борта ракеты, сигнал Δ Г * управления истребителем определяется выражением

где


kΔφ - динамический коэффициент усиления;
w - коэффициент штрафа на точность слежения за текущим значением угла между линией визирования «истребитель - групповая воздушная цель» и вектором скорости полета истребителя;
k - коэффициент штрафа на величину сигнала управления;
φтр - требуемый угол отклонения вектора скорости полета истребителя от линии визирования «истребитель - групповая воздушная цель»;
ΔL - требуемое линейное разрешение целей в группе;
Vгвц и Vи - соответственно продольные составляющие скоростей полета групповой воздушной цели и истребителя;
q - угол между линией визирования «истребитель - групповая воздушная цель» и вектором скорости полета групповой воздушной цели;
λ и Δf - соответственно рабочая длина волны бортовой радиолокационной станции истребителя и ширина полосы пропускания узкополосного доплеровского фильтра в измерителе скорости бортовой радиолокационной станции.

Документы, цитированные в отчете о поиске Патент 2016 года RU2593911C1

СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ РАКЕТОЙ 2006
  • Богданов Александр Викторович
  • Белый Юрий Иванович
  • Голубенко Валентин Александрович
  • Киселёв Владимир Васильевич
  • Кучин Александр Александрович
  • Маняшин Сергей Михайлович
  • Нечаев Юрий Валентинович
  • Пекарш Александр Иванович
  • Синицын Андрей Викторович
  • Филонов Андрей Александрович
RU2335730C2
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ РАКЕТОЙ КЛАССА "ВОЗДУХ-ВОЗДУХ" И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Богданов А.В.
  • Филонов А.А.
RU2099665C1
СПОСОБ ФОРМИРОВАНИЯ КОМАНД УПРАВЛЕНИЯ РАКЕТОЙ, ВРАЩАЮЩЕЙСЯ ПО УГЛУ КРЕНА, И РАКЕТА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Дудка В.Д.
  • Землевский В.Н.
  • Копылов Ю.Д.
  • Морозов В.И.
  • Назаров Ю.М.
RU2242698C2
СПОСОБ КОММУТАЦИИ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ ТОКА ПЛОСКОСТНЫМИ КРИСТАЛЛИЧЕСКИМИ ТРИОДАМИ 1956
  • Залкинд А.Б.
  • Матюхин Н.Я.
  • Росницкий О.В.
SU110069A1

RU 2 593 911 C1

Авторы

Кучин Александр Александрович

Богданов Александр Викторович

Миронович Сергей Яковлевич

Даты

2016-08-10Публикация

2015-03-23Подача