Изобретение относится к медицинской технике.
Одной из главных задач имплантологии является повышение механической прочности технических средств реконструкции опорно-двигательного аппарата больного. К примеру, известны случаи разрушения внутрикостного стального штифта, внедренного в бедренную кость пациента при лечении перелома. Очевидно, что решение указанной задачи адресовано специалистам - материаловедам.
Известный внутрикостный штифт [http://surgeryzone.net/info/info-travmatologia/oslozhneniya-perelomov-bedra.html, Surgeryzone - медицинский сайт > Травматология и ортопедия > Осложнения переломов бедра] и иные крепежные и опорные имплантаты, выполненные из медицинской стали, титана недостаточно соответствуют необходимым качествам, таким как бесконфликтная совместимость с контактируемой тканью (биосовместимость), долговечность работы в условиях знакопеременной деформации, механическая прочность и весогабаритные характеристики.
Заметным прогрессом в уровне данной техники является открытие и использование в этих целях медицинского сплава на основе никелида титана [Материалы с памятью формы и новые медицинские технологии / Под ред. В.Э. Гюнтера. - Томск: Изд-во «НЛП» МИЦ», 2010. - 360 с.]. Сходство деформационных свойств этого материала с таковыми «живых» тканей максимально (из известных материалов) обеспечивает критерии биосовместимости. Частным следствием биосовместимости является интеграционная особенность материала, т.е. эффективность срастания с контактируемыми тканями организма. Превосходство никелида титана среди известных медицинских материалов, в числе прочих достоинств, обеспечивают ему конкурентную востребованность в хирургической медицине.
Гладкая поверхность многих разработанных имплантатов из никелида титана недостаточно адгезивна с органическими тканями. Восполнением этого дефицита явилась композиция монолитных деталей изделия с проницаемо-пористым покрытием его поверхности. Специфическая структура такого покрытия с сильно развитой контактной поверхностью и капиллярным механизмом депонирования физиологических жидкостей обеспечивает прочное и быстрое врастание имплантата.
Известен зубной имплантат (Фиг. 1), внутрикостный цоколь которого выполнен в виде монолитного никелид-титанового стержня в химически скрепленной с ним оболочке из проницаемо-пористого никелида титана [Имплантаты с памятью формы. Научно-практический журнал. - Томск: Изд. «НИИ» МИЦ», 2008. №1-2. С. 36]. Стержень цоколя обеспечивает осевую и радиальную опору протеза, пористо-проницаемая оболочка служит матрицей остеосинтеза, и врастание протеза в альвеолярное ложе. Высокая интеграционная способность устройства позволяет зубное протезирование за одно посещение стоматолога.
Дефицит изгибной прочности протеза является недостатком устройства, принятого по наибольшему сходству в качестве аналога-прототипа предложения.
Технический результат предлагаемого изобретения - повышение механической прочности внутрикостного штифта.
Указанный технический результат достигается тем, что во внутрикостном штифте, содержащем опорный стержень из никелида титана и облегающую его оболочку из проницаемо-пористого никелида титана, химически связанную с опорным стержнем, опорный стержень выполнен из собранных в жгут никелид-титановых нитей с диаметром, составляющим отношение 0.9-1.1 со среднестатистической толщиной стенки поры.
Работа устройства, установленного в кость в качестве фиксирующего штифта, сопровождается изгибной деформацией всей композиции «опорный стержень-оболочка». Механическая прочность как предел обратимой деформации до начала разрушения определяется опорным стержнем и дополняется оболочкой. Новизна предлагаемого изобретения, позволяющая повысить механическую прочность штифта, состоит в изменении структуры опорного стержня. Редукция объема материала от цельного монолита до собранного в жгут пучка тонких нитей увеличивает интервал обратимой деформации, не изменяя, практически, опорной функции стержня.
Химическая связь стержня и оболочки, исключающая взаимное микроперемещение соприкасающихся фрагментов, повышает стабильность формы устройства в работе, не умаляя технического результата. Технология такой связи известна и достигнута в современном производстве изделий из никелида титана. Выбранный интервал соотношений диаметров нитей стержня и размеров пористой микроструктуры оболочки продиктован современными технологическими возможностями волочения и производства проницаемо-пористого никелида титана.
Достижимость указанного технического результата определена экспериментальными исследованиями и теоретическим обоснованием авторов. Научная и техническая новизна результатов исследования свидетельствуют о неочевидности предлагаемого решения, т.е. его соответствии критерию «изобретательский уровень».
На иллюстрациях представлено:
Фиг. 1. Внутрикостный штифт (прототип) в составе зубного протеза: 1 - опорный стержень; 2 - проницаемо-пористая оболочка.
Фиг. 2. Опорный стержень предлагаемого устройства: 3 - линейная сборка жгута; 4 - спиральная сборка жгута.
Фиг. 3. Внутрикостный штифт (предложение), вид в продольном разрезе.
Достижимость технического результата подтверждена лабораторными изменениями прочностных качеств действующего макета внутрикостного штифта в сопоставлении с макетом-прототипом.
Пример.
Характеристики сопоставимых объектов, методика их изготовления и измерительного эксперимента следующие.
Макет предлагаемого устройства (фиг. 3) содержит опорный стержень - выполнен в виде жгута из сложенных в пучок и скрученных спирально никелид-титановых нитей диаметром 60 мкм (фиг. 2, поз. 4). Спиральная форма более технологична при сборке устройства и обеспечивает больший интервал обратимой деформации. Диаметр сформованного опорного стержня 3 мм, длина - 50 мм. Изготовленный опорный стержень помещен в графитовую цилиндрическую форму диаметра 8 мм, в соосной расположенности. Свободное пространство формы заполнено, с уплотнением, порошком шихты никелида титана, и в условиях вакуума произведено спекание изделия. Режим спекания соответствует известному способу [Патент РФ №2394112].
Способ включает выдержку формы с изделием при температуре 1100°С в течение 30 мин и отжиг спеченного штаба, помещенного в вольфрамовую форму, при температуре 1400°С в течение 30 мин. Способ обеспечивает образование пористо-проницаемой никелид-титановой оболочки штифта и его химическую связь с фрагментами опорного стержня (фиг. 3). Для сопоставленного анализа изготовлен макет внутрикостного штифта с монолитным опорным стержнем и эквивалентными размерами.
Сравнение механической прочности произведено в динамометрической установке путем фиксации критических напряжений изгиба образцов (фиксация нагрузки в момент начала разрушения штифта). Проведенные измерения показали, что образцы диаметром 3 мм, длиной - 50 мм сформованного с содержанием опорного стержня в виде жгута из никелид-титановых нитей диаметром 60 мкм по механической прочности превосходят аналог на 50%, а величина деформации изгиба образца до разрушения превышает в 1.5 раза.
Известность технологических приемов производства устройства, его технологическая доступность и данные потребительского спроса свидетельствуют о соответствии предлагаемого изобретения критерию «промышленная применимость».
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОТЕЗИРОВАНИЯ КУЛЬТИ ГЛАЗНОГО ЯБЛОКА | 2012 |
|
RU2485915C1 |
ЗУБНОЙ ИМПЛАНТАТ | 2000 |
|
RU2193370C2 |
СПОСОБ ИМПЛАНТАЦИИ ОСТЕИНТЕГРИРУЕМОГО ПРОТЕЗА | 2018 |
|
RU2695623C1 |
ИМПЛАНТАТ ДЛЯ РЕКОНСТРУКТИВНОЙ ПЛАСТИКИ ОБШИРНЫХ ДЕФЕКТОВ | 2005 |
|
RU2301642C1 |
КЕРАТОПРОТЕЗ И СПОСОБ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ БЕЛЬМ С ЕГО ПОМОЩЬЮ | 2008 |
|
RU2367379C1 |
СПОСОБ ПЛАСТИКИ ПОВРЕЖДЕННЫХ СВЯЗОК И СУХОЖИЛИЙ | 2005 |
|
RU2303411C2 |
МАТЕРИАЛ ДЛЯ ПЛАСТИЧЕСКИХ ОПЕРАЦИЙ | 2003 |
|
RU2257230C2 |
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ДЕСНЕВОГО КАНАЛА ЗУБНОГО ПРОТЕЗА | 2006 |
|
RU2318467C1 |
КРИОАППЛИКАТОР | 2013 |
|
RU2580037C2 |
СПОСОБ ЗАПОЛНЕНИЯ ВНУТРИКОСТНОГО ДЕФЕКТА ИМПЛАНТАТОМ | 2018 |
|
RU2680920C1 |
Изобретение относится к медицинской технике. Устройство содержит опорный стержень в виде собранных в жгут никелид-титановых нитей и облегающую стержень оболочку из проницаемо-пористого никелида титана, химически связанную с опорным стержнем. Диаметры отдельных нитей и среднестатистический размер стенок пор связаны соотношением 0.9-1.1. Изобретение обеспечивает высокую механическую прочность при изгибной деформации. 3 ил.
Внутрикостный штифт, содержащий опорный никелид-титановый стержень и облегающую его оболочку из проницаемо-пористого никелида титана, химически связанную со стержнем, отличающийся тем, что опорный стержень выполнен из собранных в жгут никелид-титановых нитей с диаметром, составляющим отношение 0.9-1.1 со среднестатистической толщиной стенки отдельной поры.
КОСТНЫЙ ИМПЛАНТАТ | 1998 |
|
RU2157151C2 |
Автоматическое устройство световой и звуковой сигнализации об опасном понижении уровня воды в паровозном котле | 1954 |
|
SU101354A1 |
РАССАСЫВАЮЩИЙСЯ ИНТРАМЕДУЛЛЯРНЫЙ СТЕРЖЕНЬ ДЛЯ ОСТЕОСИНТЕЗА ДЛИННЫХ ТРУБЧАТЫХ КОСТЕЙ | 2006 |
|
RU2316282C1 |
ИНТРАМЕДУЛЛЯРНЫЙ СТЕРЖЕНЬ ДЛЯ ОСТЕОСИНТЕЗА | 2000 |
|
RU2239382C2 |
ЗАГОТОВКА ДЛЯ ИМПЛАНТАТА В ХИРУРГИИ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 1991 |
|
RU2020900C1 |
WO 2007086832 A2, 02.08.2007 | |||
DE69202584 T2, 07.12 | |||
Топка с качающимися колосниковыми элементами | 1921 |
|
SU1995A1 |
Авторы
Даты
2016-12-10—Публикация
2015-07-07—Подача